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Abstract. We develop a comprehensive approach to the evaluation of the uncertainty of a primary frequency
standard. Indirect, model-dependent means are employed for the evaluation of all known biases. This approach
leads to a lower combined standard uncertainty (CSU) and leaves frequency measurements under altered conditions
as a powerful search technique for unknown biases. We report the results of this evaluation technique applied
to NIST-7, one of the United States’ primary frequency standards. The best CSU value we have reported to the
Bureau International des Poids et Mesures (BIPM) is , while a rigorous application of this evaluation
process would suggest that a limiting Type B uncertainty of is possible. We discuss this difference
and the implications of reporting optimistic values. We also discuss the history of reported evaluations of NIST-7
including those made before the full implementation of the techniques presented here.

1. Introduction

The SI second is de� ned to be “the duration of
9 192 631 770 periods of the radiation corresponding
to the transition between the two hyper� ne levels of
the ground state of the caesium 133 atom” [1]. A
primary frequency standard is a device that realizes
this de� nition. The realization is limited by noise in
the frequency measurements and by biases causing the
realization to deviate from the ideals implicit in the
de� nition [2]. Biases arise from the environment in
which the atomic transition is measured, e.g. electric
and magnetic � elds, and motional and gravitational
effects, as well as from imperfections in the apparatus.

Over the years accuracies of frequency standards
have been evaluated with increasing sophistication. The
capabilities of our previous standards NBS-4 and NBS-6
were described over twenty years ago [3, 4]. Preliminary
evaluations of NIST-7, our � rst optically pumped
frequency standard, have also been published [5, 6].
Uncertainty evaluations of optically pumped standards
in other laboratories include those from the Laboratoire
Primaire du Temps et des Fr Âequences (LPTF, France)
[7], the National Research Laboratory of Metrology
(NRLM, Japan, now the National Metrology Institute
of Japan, NMIJ) [8], and the Communications Research
Laboratory (CRL, Japan) [9]. Notable evaluations
of magnetically state-selected standards have been
reported by the Physikalisch-Technische Bundesanstalt
(PTB, Germany) [10, 11].
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The goal in the design and operation of NIST-7
was to realize the SI second with an uncertainty of less
than . The atomic line achieved with NIST-7 is
about . To meet our target uncertainty requires
that we � nd the centre of the resonance line with
a fractional uncertainty of less than . This
unprecedented splitting of the linewidth has motivated
us to proceed with techniques and attention to details
not previously practised. Although the basic hardware
of NIST-7 has remained the same through the years, we
have made changes in the electronics and our evaluative
techniques that reduce our uncertainties. This paper
describes the evaluative process we now use to measure
the atomic resonance and to determine its biases and
residual uncertainty.

1.1 Uncertainty evaluation

1.1.1 What we measure

We choose to operate NIST-7 intermittently as a
frequency standard, rather than continuously as a clock.
Periods of frequency measurement are interspersed with
periods of bias determination. Frequency measurements
are made by comparison with a high-quality reference
oscillator, typically a hydrogen maser. We represent the
result of such a comparison by [6]

d

In this representation is the measured frequency
difference, is the unperturbed caesium hyper� ne
separation de� ning the second, d is the sum
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over frequency biases, and is the frequency of
the reference oscillator (multiplied to the caesium
frequency) during the measurement period. The
uncertainty quanti� es the statistical noise of the
measurement process. We distinguish biases from noise
by requiring what we call noise to have zero mean. Any
effect with non-zero mean belongs in the summation
of biases. In practice, the separation of from d
is never perfect. The determination of the d always
includes some noise, while small unknown biases may
remain hidden in .

We use this representation because of the
organization, clarity and insight it brings to the
evaluation process. To apply it we need to address
the following questions:

1. Is the summation over biases suf� ciently complete?

2. Is determined by well-behaved processes?

3. Is constant over the measurement interval?

Much of this paper is devoted to examining these
questions.

1.1.2 De� nitions

In the spirit of the recommendations put forward by
the Consultative Committee for Time and Frequency
(CCTF) [12], we make the following de� nitions for the
uncertainty terms used in this paper.

By Type A uncertainty we mean how well
successive frequency measurements agree with each
other when the biases and reference oscillator
are constant. It represents the instability of our
measurements due to noise. It must be found by
statistical analysis of numerous measurements. In (1)
it is represented by .

By Type B uncertainty we mean how well we can
determine the sum of biases. It is a combination of
the uncertainties (also called Type B) for each bias
in the summation. It includes statistical uncertainty in
bias determination and estimates of biases not included
in the summation. Type B uncertainty is not explicitly
represented in (1).

By combined standard uncertainty (CSU) we mean
the combination of Type A and Type B uncertainties. It
represents how well the standard realizes the de� nition
of the second.

By an accuracy evaluation we mean a series of
measurements that determines the frequency difference
between the reference oscillator and our primary
standard, properly corrected for all known biases. The
output of an evaluation is a calibration of the frequency
of the reference oscillator with a corresponding
statement of the CSU of that calibration. The reference
operates continuously, serving as a transfer standard
to compare the primary standard with other local
oscillators, to the NIST time scale AT1, and ultimately
to the International Atomic Time (TAI) scale maintained

by the Bureau International des Poids et Mesures
(BIPM).

In this paper uncertainties related to the frequency
of the standard represent one standard deviation and are
expressed in fractional frequency units.

1.1.3 Philosophy of uncertainty evaluation

The goal of an uncertainty evaluation is to not only
calibrate a reference oscillator, but also to demonstrate
how well that has been done, i.e. with what CSU.
Referring to (1), we note � rst that the CSU cannot
be less than the Type A uncertainty . For the
CSU to approach , the Type B uncertainty in the
determination of the biases must be smaller than .
Therefore, we do not use frequency measurements
under altered conditions to determine biases, since the
Type A uncertainty of such additional measurements,
also at least , would be compounded.

Instead, we determine biases by leveraged
experiments. These are measurements of some auxiliary
quantity, such as the frequency of another line in
the spectrum. We then invoke a theoretical model to
describe how the auxiliary quantity relates to the bias on
the clock transition. In doing this we must predict how
the uncertainty in the auxiliary measurement translates
into uncertainty in the bias. We must also consider the
validities of the models. We have now developed a
complete set of leveraged experiments and models to
determine all our known biases. These are discussed in
Sections 4 and 5.

We also search for additional, unknown, or
unexpected biases that might be present. This search
includes parametric measurements, measurements of
the standard’s frequency with a known change in
operating conditions. Examples are a change in the
ambient magnetic � eld or in the microwave power
used to excite the atoms. The search also includes
some special techniques to � nd electronic biases. Such
measurements form a check on the adequacy of our
models and the completeness of the set d . But we
cannot guarantee that no signi� cant biases remain. We
believe the operators of a primary standard should
consider every imaginable source of error and then
look further for unanticipated biases. However, it is the
nature of primary standards that there will always be
subtle, undiscovered biases.

When one has exhausted the search techniques and
arrived at a “best possible” estimate of uncertainty,
one knows it is only a lower bound. What uncertainty
should be reported to the BIPM? If one reports a larger
uncertainty than computed from the uncertainties of
known biases, one’s frequency number will probably
not be proven wrong. But if one reports the computed
uncertainty, it is certainly optimistic. Which method
would best serve the BIPM and the user community?
We have no answer to this conundrum. In this paper we
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report our computed Type B uncertainty and discuss
its validity.

1.2 Outline of paper

Section 2 brie� y reviews the physical description of
NIST-7. Section 3 presents the theoretical models
used for relating auxiliary measurements to biases. In
Section 4 we discuss in detail how we determine the
seven biases that we routinely include in the summation
in (1). We also discuss the uncertainties associated
with determining each bias. In Section 5 we discuss
numerous additional sources of bias. In Section 6 we
discuss the statistics of our measurements and the
Type A uncertainty that we report. Section 7 describes
the measurements that make up a typical evaluation.
Finally, Section 8 summarizes the results and presents
a combined standard uncertainty.

2. Description of the standard

NIST-7 is an optically pumped, thermal atomic-beam,
microwave spectrometer designed speci� cally as the
US primary frequency standard. Great care has been
taken throughout its design and assembly to allow for
the characterization and control of conditions that bias
the measurement of the atomic resonance. Compared
with the more conventional Stern-Gerlach type of
magnetic state selection, optical pumping yields greater
utilization of atomic beam � ux. It produces a more
symmetric Zeeman spectrum (Figure 6). It allows
a more uniform magnetic � eld in the interrogation
region. It provides greater spatial beam uniformity with
better de� ned atomic trajectories while passing a wider
distribution of atomic velocities. These aspects of the
device are discussed later where they relate to accuracy.
For completeness we begin with a brief outline of the
physical system. Detailed descriptions of NIST-7 and
discussion of its design can be found in [13-15].

2.1 Beam tube

A schematic of NIST-7, Figure 1, shows the
atomic beam, optical pumping and detection regions,
microwave excitation regions and magnetic shields
(broken lines). The entire structure is symmetric about
the midpoint. Separate regions of optical pumping and
detection are located at each end. The components of
the beam tube are brie� y described below.

2.1.1 Microwave cavity

The Ramsey method of separated oscillatory � elds [16]
is used to interrogate the atoms. The cavity spans a
drift region of length m. The microwave
interaction zones at the ends of the cavity are ring
structures called De Marchi cavities [17]. These cavities
have interaction zones of length cm, across

Oven

Fluorescence
detector

Diode laser

Pumping beam Probe beam

Diode laser

Shielded C-field region

Figure 1. Schematic diagram of the NIST-7 beam tube.
The atomic beam, optical pumping and detection regions,
microwave excitation regions and magnetic shields (broken
lines) are shown.

which the microwave magnetic � eld has a half-sine-
wave pro� le. The atomic beam is de� ned by circular
apertures of 3 mm diameter in the cavity ends.

The cavity is assembled from several parts (the
cavity ends, the elbows, the straight sections, the central
tee and the input coupling) joined with high-precision,
� at, X-band � anges. During manufacture each part is
carefully trimmed to a length corresponding to a half-
integer multiple of the guide wavelength, in vacuum
at the operating temperature of the standard. The
uncertainty in the length of any part is approximately

m, the same as the alignment precision of the
pinned � anges. This trimming operation places the
� anges at deep nulls in the microwave � eld to minimize
leakage from the joints. It also contributes to the tuning
and end-to-end symmetry of the cavity. The cavity is
quasi-isolated from the coaxial feed line with a 10 dB
attenuator located right at the waveguide coupling pin.
The loaded of the cavity is about 300.

2.1.2 Magnetic and electric � elds

The requirements for both the microwave cavity
orientation and the magnetic � eld uniformity are best
served by a magnetic quantization � eld (C-� eld) parallel
to the atomic beam. The C-� eld solenoid and shield
package extend 2.34 m over the entire length of the
beam tube and encompass the regions of optical state
selection and state detection. The shielded solenoid
without additional trim coils produces a magnetic � eld
at the Ramsey cavities that differs from the mean � eld
by a few parts in at our nominal operating � eld of

m T. Because of their long cylindrical geometry,
the three nested magnetic shields produce a transverse
shielding of order but a longitudinal shielding of
only order . The high transverse shielding ensures
that external perturbations can change only the axial
� eld. The relatively poor axial shielding is compensated
by active control of the current through the C-� eld coil.
Degaussing coils are wound separately on each shield.

To control dc electric � elds within the standard
as well as to eliminate stray electric currents, all
the substructures within the standard (microwave
cavity, C-� eld solenoid, magnetic shields and vacuum
system) are electrically isolated from one another.
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Furthermore, no junctions of dissimilar metals are
allowed. The substructures are intentionally made
electrically common at one point. In this way, the entire
beam tube is an electrostatic shield. At the same time,
no unintentional currents can � ow through the standard
where they could generate undesirable magnetic � elds.

2.1.3 Caesium ovens

The atomic beam emerges from caesium ovens located
externally at each end of the beam tube. Each oven
has a single-tube collimator, mm in diameter and

cm long. The collimator produces an atomic beam
with a half-angle divergence of mrad. The beam is
further collimated by the apertures of the microwave
cavity. A typical atomic � ux at the detection region is

s when the oven temperature is C. For
four years we used a hybrid, re-circulating collimator
oven design [18]. We now use a simple, single-tube
collimator followed by an absorptive aperture. This
oven and its performance are also described in [18].
The oven temperature is now servo-controlled, but was
not always controlled in the past. The external location,
approximately cm from the nearest cavity end,
ensures that the heat of the oven will not create thermal
gradients in the cavity that would distort end-to-end
cavity phase measurements.

2.1.4 Laser light source

The optical pumping and detection light is generated
by diode lasers whose wavelengths are stabilized using
a saturated absorption feature in external caesium-
vapour cells. The caesium transition is from the
ground state to the excited state at 852 nm.
The hyper� ne structure of this transition is shown in
Figure 2. The excited state hyper� ne separations are
from Tanner and Wieman [19]. The speci� c hyper� ne
transition used for state preparation is the

, where and indicate the ground and
excited state hyper� ne levels, respectively. Detection is
accomplished by driving the cycling
transition. The two different optical frequencies were
formerly generated from a single extended-cavity laser
in conjunction with an acousto-optic modulator. Mirrors
guided the beams from an optical table to the standard.
But air turbulence caused � uctuations in the pointing
of the laser beams. Recently, two, separate, distributed
Bragg re� ector (DBR) lasers have been used, set up
on independent optical tables. Their light is transmitted
to the standard by optical � bres. These changes have
greatly reduced sensitivity to acoustic noise.

2.1.5 Optics

The beam tube has separate regions for optical
state preparation and detection at each end of the
beam tube to facilitate beam reversal. This also

Figure 2. Hyper� ne structure of the caesium optical
transition.

permits simultaneous operation of counterpropagating
atomic beams. The laser beams are injected into
the system through normal incidence, anti-re� ection
coated windows. The laser beams are linearly polarized
and perpendicular to the atomic beam. The state-
preparation beam is retrore� ected with its polarization
rotated by p rad to create scrambled polarization
in the pumping region. This allows all atoms to be
pumped without leaving any in “dark states” that
would generate an unwanted background signal at
the detector [20]. The � uorescence collection optics
cover p steradians and incorporate spatial � ltering to
reject scattered light [13]. The � uorescence detector
is located outside the vacuum system at the end of
a glass light pipe. It consists of an unbiased, mm
photodiode of low junction-capacitance , followed by a
low-noise operational ampli� er in a transconductance
con� guration. The transfer function is V/A.
The noise � oor of the detector is m V Hz and the
effective bandwidth is Hz.

2.1.6 Vacuum chamber

The main vacuum chamber is a cylinder cm in
diameter, m long, and symmetric about its mid-
point. It is pumped by two l/s ion pumps. Our
typical operating pressure is Pa, measured
at the pumps. This is an order of magnitude lower
than the pressure where we begin to see collisional
attenuation of the atomic beam. The chamber is
wrapped with a nonmagnetic, bi� lar-wound heater
plus thermal insulation. During operation, the chamber
temperature is held constant at C.
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2.2 Electronics

Numerous electronic systems are required to operate
the standard and maintain its environment. The major
ones are described below.

2.2.1 Microwave source

Figure 3 is a block diagram of the microwave
synthesizer [21]. A MHz quartz-crystal oscillator is
phase-locked to the MHz output of the reference
oscillator, a hydrogen maser from the NIST timescale
ensemble. This phase-locked loop ensures low phase
noise at Fourier frequencies above Hz while also
preserving the long-term stability of the maser. To
further reduce phase noise above Hz, a MHz
quartz oscillator is phase-locked to the MHz quartz
oscillator. The MHz quartz oscillator (multiplied by
8 to produce MHz) replaces the internal frequency
reference for a commercial direct digital synthesizer
(DDS) [22]. The nominal output frequency of the DDS
is Hz. Potential spectral impurities in the
DDS output are removed by a narrowband phase-lock
to a MHz crystal oscillator. The output of the

MHz oscillator is multiplied by 5 and mixed with
the MHz to produce Hz. This signal
is � ltered, ampli� ed and applied to a step recovery
diode. The 18th harmonic at Hz is then
selected with a � lter. This output frequency is in
(1) as it was synthesized from the reference oscillator.
Using computer control we make small changes in the
frequency of the DDS to tune the microwaves by known
amounts with a resolution of m Hz. The tuning range
is kHz, suf� cient for measuring the locations
and lineshapes for all seven microwave transitions at
nominal C-� elds.

Figure 3. Block diagram of the microwave synthesizer.
The MHz input from the reference oscillator is multiplied
to the caesium resonance frequency. Computer control of
the direct digital synthesizer (DDS) permits tuning and
modulation.

2.2.2 Frequency servo

Figure 4 is a block diagram of the digital frequency-
control system [23]. The frequency servo performs
slow square-wave frequency modulation of the
microwave synthesizer by computer control of the
DDS. The � uorescence signal from the caesium
beam is detected by a photodiode, ampli� ed, and
digitized by an analogue-to-digital converter (ADC). A
computer samples and demodulates the signal, inserting
blanking intervals after each frequency change. The
demodulation waveform is designed to produce deep
nulls in the frequency response of the servo for
multiples of the power-line frequency. The resulting
error signal drives a software controller that steers the
DDS centre frequency toward the centre of the atomic
resonance, as described in Section 3.4. The frequency-
steering corrections are stored by the computer as values
of in (1). The mean frequency difference between
the reference oscillator and the atomic resonance,
together with its variance, is later calculated from these
values. The frequency output of NIST-7 is thus not an
electronic signal, but a table of frequency-difference
numbers. Unlike previous frequency standards at the
NIST, the frequency servo of NIST-7 does not lock a
local oscillator to the caesium atomic resonance.

Figure 4. Block diagram of the frequency servo, showing
the principal components used for frequency measurements.

2.2.3 Microwave power servo

A block diagram of the microwave power servo is
shown in Figure 5. One half of the microwave power
is sent to the beam tube. The other half is measured
with a commercial radio-frequency (rf) power meter.
A digital feedback control system monitors the power
meter and adjusts an attenuator to maintain the desired
power. The absolute accuracy of the commercial power
sensor is not critical. Instead, we calibrate the power
meter in terms of the atomic Rabi frequency. Once
this calibration is performed, we can make changes in
the microwave power with an uncertainty of dB.
All components of the microwave servo are enclosed
in an rf-tight metal box to prevent microwave leakage
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into the laboratory. All inputs and outputs to and from
this box are con� gured to prevent microwave leakage
without also introducing ground loops. Similar attention
has been given to the components of the frequency
synthesizer.

Figure 5. Block diagram of the microwave power servo. A
mixer is used as a current-controlled attenuator.

2.2.4 C-� eld servo

The frequency servo periodically steps out from the
clock transition to the � eld-sensitive line and
measures its position with a single modulation cycle.
This information is used by the computer to make small
corrections to the C-� eld current so that the position of
the � eld-sensitive line is held constant.

2.3 Software

NIST-7 employs several computers for data acquisition,
data analysis and implementation of digital servos. We
have found that procedural programming languages
such as C are not suitable for large applications. Instead,
C++ was selected because it is an object-oriented
language. C++ permits reuse of source code through
the mechanism of software inheritance. Inheritance
allows new software modules to contain all the tested
functionality of any previously written modules without
explicitly copying source code. Older features may
be modi� ed or removed, while new features may
be added. Inheritance reduces the total amount of
source code that must be tested, as only the new
or modi� ed features represent additional code. This
also makes code maintenance simpler, as a particular
algorithm or data structure resides in a single location,
propagating through inheritance, not by source-code
duplication. Four years of software development has
produced TFLIB, a new library of software tools that
exceeds lines of C++ source code. Its object-
oriented design has made it generally useful for time
and frequency metrology. TFLIB has been used to
build software applications not only for NIST-7, but
also CRL-O1 [9], another optically pumped caesium
thermal beam, and NIST-F1 [24], a caesium fountain.

2.4 Operational parameters

Table 1 summarizes the basic operational conditions
for NIST-7, including a few not detailed elsewhere in
this paper. The Rabi frequency and Ramsey linewidth
correspond to the microwave excitation power used for
normal operation, that is 2.5 dB below optimum.

Table 1. Typical operating parameters for NIST-7.

Parameter Value

Oven temperature C
Mean atomic velocity m/s
Width of velocity distribution m/s
Interaction length cm
Separation of interaction regions cm
Atomic beam aperture diameter mm
Beam tube temperature C
Optical pumping transition
Optical detection transition
Magnetic � eld (C-� eld) m T
Zeeman line separation kHz
Excitation Rabi frequency kHz
Ramsey fringe linewidth Hz

3. Theoretical background

As our evaluation technique is heavily model-
dependent, we describe here the theoretical models we
use in determining biases. Few of the results are new,
but some of the formalism is not common to the clock
literature. For reference we include a table of the many
symbols used in the paper. A few of them have multiple
meanings, but local de� nitions in different parts of the
paper should avoid confusion.

autocorrelation of input noise
time integral of half Rabi frequency
cavity pulling coef� cient
half Rabi frequency
wave-function amplitude
speed of light
denominator for most biases
electric � eld; error signal; end-to-end phase

bias coef� cient
angular momentum quantum number
frequency difference

, aperture illumination fractions
inhomogeneity function
ideal servo gain
servo gain; acceleration of gravity

, -factors
magnetic � eld
height above geoid
function for corrections to lineshapes
Planck constant divided by p
atom � ux
Bessel function of order
associated function for corrections
ratio of signal to transition probability
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length of drift region
length of excitation region
azimuthal quantum number
number of data points in a frequency

measurement
index for frequency data; atomic density
transition probability

resonance line
residual fractional frequency difference
Ramsey fringe lineshape
unbiased frequency
servo convergence rate
signal
signal noise
transit time across drift region
time
evolution matrix
fractional frequency including end-to-end

phase bias
velocity
temperature ratio in black-body formula
weights for frequency measurements
Ramsey dimensionless � eld parameter
slope of background
longitudinal coordinate for inhomogeneity

analysis
, wave function amplitudes

half-angular frequency detuning
d pre� x for frequency biases

relative amplitude of inhomogeneity
phase of microwave � eld
power and modulation coef� cient

for inhomogeneity
Bohr magneton
frequency
transit-time distribution
Type A frequency uncertainty; cross-section
Allan variance
transit time across excitation region
frequency servo cycle time
phase change across drift region
end-to-end phase difference
Schr Èodinger wave function
angular frequency: p whenever

and have the same subscript

3.1 Zeeman spectrum

The hyper� ne separation in caesium arises from the
dipole interaction of the valence electron with the

nucleus. Because of the large nuclear spin,
, the two hyper� ne levels have angular

momenta and , with seven and nine
magnetic sublevels, respectively. The Zeeman spectrum
has seven s transitions ( ) starting from each
of the sublevels. We use the initial (and
� nal) value to designate which s -transition we are

referring to. Our frequency measurements are made
on the to transition, often called the
“clock” transition. There are also fourteen p -transitions
( ) consisting of six overlapping pairs located
in frequency between the s -transitions, and two located
just outside. The s -transitions are excited by the
microwave magnetic � eld component parallel to the
static C-� eld, while the p -transitions are excited by
microwave magnetic � eld components perpendicular to
the C-� eld.

Figure 6 shows a Zeeman spectrum for NIST-7.
The broad overlapping resonances are the Rabi pedestal
lineshapes for the s -transitions, while the narrow spikes
are the unresolved Ramsey fringes. These lineshapes
are fully described in Section 3.2. Pedestal overlap may
cause a bias in the position of a Zeeman line. This
effect, called Rabi pulling, is discussed in Section 5.2.
Although the dominant microwave magnetic � eld
component is oriented parallel to the C-� eld to excite
the s -transitions, the small dips between and outside
the major resonances are indicative of weak excitation
of the p -transitions for some atoms [25]. At higher
C-� elds and microwave power these transitions are
clearly resolved.

Figure 6. Zeeman spectrum for NIST-7. This spectrum was
recorded at a C-� eld of m T and optimum microwave
power for the clock transition.

The magnetic � eld dependence of the s hyper� ne-
transition frequencies is given by the Breit-Rabi formula
[16, Eq. (III.120,121)]

where is the magnetic quantum number of the initial
and � nal states,

p
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and are the -factors for the atom and nucleus,
respectively, is the Bohr magneton, is the
magnetic � eld intensity, and p is Planck’s constant.
This relation is derived by applying the quantum
mechanics of angular momenta to the dipole interactions
of the atomic and nuclear magnetic moments with each
other and with the C-� eld [16]. Corrections to the
Breit-Rabi formula are insigni� cant unless the C-� eld
is orders of magnitude larger than where we operate
[26].

The relative size of the � rst-order Zeeman shift
is about at the C-� eld we normally use.
Hence a power-series approximation of the square root
is adequate:

For the � eld-dependent transitions the third-order term
in would be of order . This is negligible
compared with the observed � uctuations in the linear
term. The clock transition has no � rst- or third-order
contribution, while the fourth-order term is of order

.
If we de� ne the Zeeman frequency by

p

then (4) can be rewritten

where the magnetic � eld and values no longer
explicitly appear. Equation (6) is the model we use
for the frequency of the s hyper� ne transitions.

3.2 Rabi and Ramsey lineshapes

In this section we describe the theory of the Rabi and
Ramsey lineshapes observed in the Zeeman spectrum.
The basic approximation is to treat the caesium atom as
a two-level system, the ground state hyper� ne levels.
The small effects of other magnetic sublevels are
discussed under Rabi and Ramsey pulling. The effects
of optical transitions are discussed under black-body
and light shifts.

As the C-� eld is nominally parallel to the atomic
beam, the microwave cavity has an H-plane orientation.
In this con� guration the atoms experience a microwave
� eld pulse of half-sine-wave pro� le as they pass through
the cavity. Previous primary standards, such as NBS-6
and NBS-4, as well as most commercial standards, use
a transverse C-� eld and an E-plane orientation of the
cavity. The atoms then experience a microwave � eld
pulse with a square pro� le. These different excitation
pulse shapes cause differences in the lineshape, as noted
below.

3.2.1 Quantum mechanics of a two-level system

We present here a formulation based on the time-
dependent Schr Èodinger equation. The rudiments of this
formulation have been published previously [27, 28].
An equally valid approach employing the density matrix
is presented in the book by Vanier and Audoin [29].

The time-dependent Schr Èodinger equation for a
two-level system excited by radiation at frequency
can be written

Here, is the two-component wave function, is the
Hamiltonian, and and are the energies of the
upper and lower states, respectively. The interaction
Rabi frequency is , where is the
Bohr magneton, is the factor, is the
amplitude of the microwave magnetic � eld parallel to
the C-� eld, is Planck’s constant divided by p , and

is the phase of the � eld at . The variables
and are real and may vary with time, but slowly
compared with .

The � rst step towards solving (7) is to use the
rotating-wave approximation. We write the cosine in
the interaction term as the sum of two exponentials. We
then keep only the term that “rotates” in the same sense
as the “precession” corresponding to the energy levels,
where the terms in quotes have physical meaning for
magnetic resonance of a spin-one-half system [30]. That
is, we replace (7) by the rotating-� eld Hamiltonian

where . The principal correction caused by the
“anti-rotating” part of the Hamiltonian is the Bloch-
Siegert bias discussed in Section 5.4.

3.2.2 Phase-factoring transformation

The second step in solving (7) we call phase factoring.
We de� ne new probability amplitudes that differ from

and by time-dependent phases:

Probabilities are unaffected by such a phase change.
The new amplitudes and are the components of a
wave function obeying

a
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By choosing the phases

b

and c

the new Hamiltonian becomes

d

where the coef� cients and are both real. We have
introduced the abbreviation l , where
l is the detuning from the atomic resonance
frequency . Either or both of and
may be time-dependent. With these phase changes we
have eliminated the rapid time-dependence and complex
phase of the coupling coef� cients. We have also made
the new Hamiltonian real and traceless.

We further de� ne and as those solutions of
(10a) obeying the initial conditions and

. The probability that a transition has occurred
after excitation for a time is then represented by

The form of (7) or (10a) guarantees that the
normalization of the wave function is constant at all
times:

3.2.3 Rabi solutions

The general solution of (10) can be expressed by

where the unitary evolution matrix satis� es
(10a) and the initial condition that is the unit
matrix . By the unitary requirement on a matrix,
the evolution matrix must have the form

In general, cannot be found analytically when
either or is time-dependent. We give below one
exact solution and two approximate solutions.

Constant excitation

When and are both time-independent, (10) are
coupled, linear, � rst-order differential equations with
constant coef� cients that can be solved by standard
techniques, e.g. Laplace transforms. Here we use a
matrix technique [27].

We write the evolution matrix as

As a constant commutes with itself at all times,
no time-ordering of operators is required in the

exponential. Expanding the exponential of the matrix
gives

Now the cosine is an even function of its argument, or
a function of the square of its argument. From (10d),
the square of the Hamiltonian is a constant times the
unit matrix:

where . Hence, is just
times the unit matrix. Similarly the sine is an odd
function of its argument, or the argument times an
even function, as shown in the second line of (16).
Substituting (17) into (16) we � nd the solution

The components are

and

Note that is pure imaginary.
The associated probability for an atom initially in

state to make a transition to state is

which is often referred to as the Rabi formula [31]. It
describes a lineshape with a strong central peak and
decreasing side lobes separated by nulls. The height
of the central peak reaches a maximum of unity when

p , or odd multiples thereof. We de� ne optimum
power to be the excitation power corresponding to the
maximum transition probability at zero detuning.

Weak excitation

When is weak, an approximate solution to (10d) valid
to � rst order in is easily found. First we assume
is zero and solve for

where

l
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We then insert this result into the equation for and
obtain the approximate solution at time

This solution is valid whenever the transition probability
is small, i.e. in the wings of the Rabi lineshape, as well
as when the excitation is weak.

If we de� ne as zero outside of the range
to , then the limits of integration in (23) can be

extended to in� nity and (23) can be recognized as a
phase times the Fourier transform of . The transition
probability becomes just the absolute square of the
Fourier transform. The transform can be computed
analytically for many forms [32]. For and
constant in the range to the transition probability
becomes

l l a

which is the same mathematical expression as obtained
for single-slit diffraction. The l fall-off arises from
the abrupt turn-on and turn-off of .

When has the shape of half a sine wave, we
write

p p b

where is not the peak, but the average height. If
is constant and (24b) holds, the transition probability
becomes

p l

l p
c

The l fall-off arises from the discontinuities in slope
at and . These approximations for large detuning are
used to estimate Rabi pulling.

Small detuning

For the Ramsey solutions discussed in Section 3.2.4 we
need results only for detuning that is small compared
with . To � nd an approximate solution for this case we
� rst form the sum and difference of and in (10a):

For the solution of (25) is

where the argument is de� ned as the inde� nite
integral of :

A � rst-order solution is then obtained by substituting
(26) into the detuning terms in (25) and integrating.
Separating and we � nd

a

b

If is constant, (28) can be rewritten at time as

a

b

where the new functions are

a

and

b

As the � rst-order corrections are out of phase
with the zero-order solution, they are best interpreted
as making small phase changes in and . They
make only second-order corrections to the transition
probability. These phase changes are used in the
Ramsey fringe approximations in Section 3.2.4.

The integrals in (30) can be done analytically in two
cases, which luckily are the cases of physical interest.
When is constant, we have and

in agreement with the small-detuning approximation to
(19). When is a half-sine wave, we � nd from (24b)

p

and

Then contains the integral form of the zero-order
Bessel function

In both cases vanishes because is symmetric
about .

If were antisymmetric about , then
would be zero. The transition probability would vanish
at zero detuning. This case applies to the transverse
component of the microwave � eld, which excites p -
transitions when it has a half-cosine wave form, as it
does for the cavity � elds in NIST-7.
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3.2.4 Ramsey solutions

General form and interpretation

In Ramsey excitation the atoms are partially excited in
one region for a time , allowed to drift freely for a
time , then excited again in a second region for a
time . We � nd the wave function for this case by
successive applications of the evolution matrix:

where the subscripts 1 and 2 refer to the � rst and
second excitation regions, respectively. and have
the form given in (14). is the solution of (10a)
when is zero. It is diagonal with elements given
by (21) and (22), except for a change in the integration
limits:

l

where

The effect of is to alter the relative phases of
and . The subscripts on allow for a difference in the
microwave phases in the two excitation regions.

The matrix multiplications in (35) are easily carried
out. The resulting transition amplitude is

Squaring, we obtain the transition probability

The � rst two terms constitute the Rabi-pedestal portion
of the lineshape. They can be interpreted as the
probability that a transition occurs in the � rst excitation
region times the probability that it does not occur
in the second excitation region, plus the probability
that a transition occurs in the second excitation region
times the probability that it does not occur in the � rst
excitation region. The third term describes the Ramsey
fringe resulting from the interference of the transition
amplitudes in the two regions. When it
describes rapid oscillations in detuning with an overall
amplitude similar to that of the Rabi pedestal on which
it sits.

Since and are constrained by normal-
ization, the Rabi pedestal and the Ramsey fringe are
each constrained to the maximum value . Optimum
power, originally de� ned by p , now occurs at

p as there are two excitation regions.

Form for small detuning

In the vicinity of the central Ramsey interference fringe,
when we can use the approximate solutions
for small detuning (29) in (39). Keeping only � rst-
order terms and assuming the two excitation regions
are identical, we obtain

for the Rabi pedestal and

l l l

for the Ramsey fringe. For single-velocity atoms, as in
the caesium fountain, (40) and (41) provide an adequate
description of the lineshape. As , where
and are the lengths of the excitation and drift regions
respectively, we refer to the term containing as
an correction. It will appear in the second-order
Doppler, end-to-end phase, and inhomogeneity biases.

The full width of the Ramsey fringe, computed
from (41) when the cosine vanishes, is

. This width actually decreases as
microwave power and increase. But this effect is
unimportant when the lineshape is averaged over a
broad velocity distribution.

3.2.5 Average over velocities

In the preceding analysis we have considered the atoms
to have a constant velocity . In real atomic beams from
thermal sources the atoms have a broad distribution of
velocities . This distribution is narrowed when
magnetic state selection is used, but not when optical
pumping is used. To average the preceding transition
probabilities over atoms in the beam we introduce the
transit-time distribution

where and are both normalized to
unit integral. We then write the averaged transition
probability as

Remember that is also being integrated
over.

As the width of the Ramsey fringes is proportional
to , the velocity average superposes fringes of different
widths. Like white-light fringes, only the central fringes
survive this averaging. The rest “wash out”. The
washing out occurs at smaller detuning as the transit-
time distribution becomes broader. Figure 7 shows
a typical Ramsey lineshape for NIST-7 recorded at
our usual operating power, i.e. dB below optimum
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Figure 7. Ramsey lineshape for NIST-7 at dB below
optimum power.

Figure 8. Rabi pedestal lineshape for NIST-7 at dB
below optimum power.

power. Only one side lobe on each side of the central
fringe is distinct.

Figure 8 shows a typical Rabi pedestal for NIST-7
taken at a microwave power dB below optimum.
The side lobes have been totally washed out. The spike
in the centre is the unresolved Ramsey fringe. The dip
in the centre arises from slow atoms that are excited
above their individual optimum powers.

Note that when (41) is substituted into (43) we have
an expression close to the Fourier cosine transform

of the transit-time distribution times the transition
probability. This result is the basis for our method
of determining velocity distributions [33, 34].

3.3 Bias models for slow square-wave modulation

Several biases depend on the transit time of an
atom through the beam tube. These biases must
then be averaged over a distribution of transit times
with appropriate weighting factors to re� ect their
relative contributions to the signal. Other biases depend
explicitly on the resonance lineshape. Both depend on
the method used to � nd the line centre. In this section
we describe these dependencies explicitly.

Let the dc clock signal at a given detuning
l be denoted by l . The servo measures signals

l l , where is the modulation
amplitude in angular frequency units. It then adjusts l
to make l l . The signal is proportional to
the average transition probability de� ned by (43).

l l

where the coef� cient includes the beam � ux,
detection ef� ciency, preampli� er gain, analogue-to-
digital conversion, etc.

3.3.1 Biases attributable to phase changes

As l is small when the servo locks to the Ramsey
fringe, we can use the approximate forms (40) and (41)
in the signal. Then

l

l

When both l and are very small the cosine can
be approximated, so the servo resonance condition
becomes

l l l

Solving (46) for the resonance detuning l , we � nd

l a

with

b

The denominator is just twice the slope of
the Ramsey fringe (41) evaluated at l .
Equation (47) is used for the second-order Doppler and
end-to-end phase biases treated in Sections 4.2 and 4.4.
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For the broad transit-time distributions found in
NIST-7, the factor in the denominator effectively
shifts to higher values. This causes the integral
ratio in (47) to depend appreciably on both microwave
power and modulation amplitude. The modulation
amplitude dependence means that the dc lineshape is
asymmetric [35, 36]. For NIST-7 this asymmetry is
very small, only to of the linewidth, but still
signi� cant for calculated biases.

3.3.2 Biases attributable to background variation

Another cause of frequency biases is a change in the
background signal or the microwave � eld amplitude
with detuning. If a background signal is present with a
linear variation l , then the signal difference in (46)
is augmented by . This leads to a background
bias

l

This result is used in the discussion of Rabi pulling
in Section 5.2.

3.3.3 Biases attributable to resonance inhomogeneity

Suppose the atomic resonance frequency varies
along the beam path. This happens if the magnetic
� eld varies (Section 5.1), or if changes are induced by
the microwave � eld in or near the excitation regions.
For the moving atoms in the beam such changes vary
in time. For Ramsey excitation the accumulated phase
in the drift region becomes

in place of (36). This reduces to (36) if we de� ne l as
, where is the average resonance frequency

in the drift region. With this re� nement the preceding
analysis remains valid.

However, biases do occur when the resonance
frequency in the excitation region (= 1 or 2) differs
from its average in the drift region by .
Then the in (28) is replaced by l . This
replacement causes a change in the phase of . From
(39) this change in phase augments the cosine argument
in (41) by , where

is the average offset of the resonance frequency in the
two excitation regions. Equation (50) is also the offset
of the Rabi pedestal, since the � rst two terms in (39)
measure the frequency only in the excitation regions,
averaging the offset for the two regions.

When this additional phase is inserted in place of
in (47), we obtain the inhomogeneity shift

l

where

The factor , modelled after those used by De Marchi et
al. [37], is of order unity and contains all the dependence
on microwave power and modulation amplitude. It is
used in the discussion of magnetic � eld inhomogeneity
in Section 5.1.

3.4 Servo theory

The slow square-wave frequency servo used with
NIST-7 makes an initial estimate for the resonance
frequency. It then measures the signal level at a � xed
offset , the modulation amplitude, on either side
of the initial estimate. The difference between the two
signal levels is the error signal. From it we construct
a new estimate for the resonance frequency and the
process is repeated. The set of frequency estimates
so obtained becomes the raw data of frequency
measurements by NIST-7.

Let be the -th estimate for the microwave
frequency. The error signal associated with this
detuning is

where is the signal level on either side of
the line as given by (45) and is the signal noise
accompanying the measurement of . For close to
the resonance frequency , we use a Taylor expansion
about to write

where is the derivative of with respect to , and
. By de� nition of the � rst two terms

cancel. We de� ne the difference between derivatives in
brackets to be the reciprocal of the ideal gain . Then
(54) reduces to

A frequency correction is computed by multiplying
the error signal by a gain factor . This correction is
then subtracted from the previous frequency estimate
to obtain the next frequency estimate

In terms of the initial estimate, the -th estimate
becomes
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The summation of error signals is the digital counterpart
of an integrator in an analogue servo. When we
substitute (55) into (56) we obtain the recursion relation

This is the basic recursion relation for our servo theory.
If we further de� ne the convergence rate

, then the solution of (58) can be written

If the absolute value of is less than , then (59) shows
that the error in the initial estimate is reduced, as is the
effect of noise many iterations ago. Table 2 shows how
the value of , or , determines the behaviour of the
servo. As the slope of the lineshape can be measured,
the ideal gain can be determined and the actual gain set
close to it for rapid convergence.

Table 2. Servo behaviour versus convergence rate.

Gain Convergence rate Servo behaviour

Diverges monotonically
Converges monotonically
Converges immediately
Converges with oscillation
Diverges with oscillation

The effect of the signal noise is to introduce
noise on to the frequency record. If the noise is white,
as from atomic-beam shot noise, then it has zero mean
and is uncorrelated with itself at another time:

where the curly braces denote an average over a large
number of samples and is a measure of the signal
noise on one side of the line. Then the mean of the
frequency record is just with no bias. But
if the mean of the noise is , then the frequency
record acquires a bias. Summing the power series in
we obtain from (59) the mean frequency

Such a bias could occur if, for example, the detection
laser’s amplitude or the signal ampli� er’s gain varied
in synchrony with the modulation.

The statistics of the frequency record re� ect both
the statistics of the noise and the convergence rate of the
servo. Applying (61) to the square of (59) we obtain
the variance

where the second form takes into account the
relationship between and . The variance is reduced
by using a gain less than the ideal gain (less noise is
written on to the frequency record), but convergence
is slower. This effect is readily observable when error
signals and frequencies are plotted together in real time.

We also see from (59) that use of a non-ideal
gain introduces correlation between successive values
of frequency, even when no correlation exists in the
input signal noise. We can compute this correlation in
the same way that we obtained the variance:

valid for . Thus the correlation decreases by the
convergence factor for each cycle of separation.

A common measure of frequency stability is the
two-sample or Allan variance. Its basic de� nition is
[38]

where is the average of the relative frequencies to
and is the cycle time. For the Allan

variance becomes

We can compute the Allan variance for small values of
in a similar fashion. For example,

For large values of the Allan variance is dominated
by the positive terms in the square of the averages.
Using (64), (65) and (66) we � nd

with corrections smaller by the factor . This result
is independent of the servo gain. It describes white
frequency noise, the type expected from white input
noise. Extrapolating (70) back to small values of , we
see that the results (68) and (69) are smaller if the gain
is less than ideal and larger if it is greater. By using the
ideal gain we obtain (70) for all values of .

We apply these results in the noise discussion of
Section 6.

4. Frequency biases for which corrections are made

There are seven frequency biases affecting NIST-7 for
which corrections are routinely made. We write the
sum of these biases in (1) as

d d d d d d d d
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The d s refer to the quadratic Zeeman, second-order
Doppler, cavity pulling, end-to-end phase, distributed
cavity phase, black-body, and gravitational biases,
respectively. The � rst four depend on operating
conditions that may change from one evaluation to the
next, or even from one frequency measurement to the
next. The last three, which involve the atomic beam’s
alignment, the interior temperature of the beam tube,
and its physical location, are stable.

Each bias is determined with the aid of information
from leveraged experiments. Theoretical models are
then applied to relate the results of these experiments
to the determination of the biases. This procedure
determines each bias with an uncertainty (Type B)
smaller than the Type A uncertainty of a frequency mea-
surement. The details for each bias are discussed below.

4.1 Quadratic Zeeman effect

This bias arises from the magnetic � eld (C-� eld)
deliberately imposed on the atoms. It is the largest bias,
hence it must be measured with the smallest relative
uncertainty. Our leveraged experiment is measurement
of the frequency of an adjacent microwave transition
that depends much more strongly on the magnetic � eld.

Our model, the Breit-Rabi formula, was presented
in (6). From it we � nd the quadratic Zeeman bias for
the clock transition is simply

d

This shift is always positive and is independent of
microwave power and modulation amplitude.

To � nd we measure the frequency of the
adjacent � eld-dependent transition in the
Zeeman spectrum

The difference between the frequencies of the
and lines is just

Solving (74) iteratively we obtain

with negligible error. The value of is maintained
by the C-� eld servo at a � xed value by adjusting the
C-� eld current as needed. The value of is the result
of measurement of the clock transition. These numbers
are used in (75) and (72) to compute d .

The accuracy of the value of obtained from
(75) is limited by the ability of the C-� eld servo to
hold constant in the presence of � uctuations in the
C-� eld arising from � uctuations in the external � eld.
From Allan variance measurements of with the servo
active, the uncertainty in is of the order of Hz.
This corresponds to an uncertainty of Hz in as

computed by (75). When is about kHz, where
we normally operate, an uncertainty of Hz in
corresponds to an uncertainty in d of Hz or

as computed by (72). This is the uncertainty
we assign to this bias.

As measured, both and contain other
biases. These biases are nearly identical for the two
transitions, but do differ slightly because the
transition has a slightly smaller matrix element and
is thus not quite as strongly excited by the same
microwave � eld strength. By subtracting the two
frequencies we are left with residual differences in
these other biases of a few times . We could
compute these small differences, but they are much
less than the � uctuations of Hz in .

To check our model for the quadratic Zeeman bias
we operated NIST-7 at � ve different C-� eld values,
corresponding to the /kHz values , , ,

and . The quadratic Zeeman bias varied from
Hz to Hz, a span of in fractional

frequency. But after subtracting this and other known
(essentially constant) biases, we found that the corrected
frequencies had a scatter of only , equal to
the Type A frequency uncertainty of the measurements
at each C-� eld value.

4.2 Second-order Doppler effect

This bias arises from the special theory of relativity.
For a single atom with longitudinal velocity much
less than the velocity of light , it is given by

d

For NIST-7, the mean velocity is about m/s, making
the second-order Doppler shift about .
This bias is always negative.

As the atomic beam includes atoms with a range
of velocities, must be averaged over the velocity
distribution with weighting factors for transition
probability and modulation amplitude. We can do this
by adapting the theory presented in Section 3.3.1. To
a transversely moving atom the microwave frequency

appears to be shifted to . Then the
detuning l should be replaced by l . We
make this substitution in the argument of the cosine in
(45), and de� ne the new terms to be the time-dependent
phase . Recalling that , we � nd

This phase is very small, so it can be used in (47)
in place of . The � nal result for the second-order
Doppler shift is

l

where was de� ned in (47b). This relation is our
model for this bias.
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Neglecting relative to (78) simpli� es to

l

where is without the terms. This
approximation is low by roughly . There is no
singularity at small because both the transit-time
distribution and the modulation factor vanish there.
The corrections included in (78) but not in (79)
add about 0.5 % to the bias, so they are retained in
our model.

The primary limitation to the accuracy of the
second-order Doppler bias is in the determination of the
velocity distribution. The leveraged experiment is the
measurement of Ramsey lineshapes at several power
levels. These lineshapes are then Fourier-transformed
and combined in a weighted manner described in [33,
34] to obtain the velocity distribution. The method
is based on the same lineshape theory derived in
Section 3.2. The method also yields a value for to
use in (78) or (79). Velocity distributions obtained by
a time-of-� ight method using pulsed optical pumping
agree well with those from the Fourier transform
method [39].

Repeatability of the computation of the second-
order Doppler bias from a velocity distribution was
investigated using experimental data. One hundred sets
of Ramsey lineshape data were taken consecutively. A
velocity distribution was extracted from each data set.
The scatter in the Doppler biases computed from these
velocity distributions was 0.06 %, corresponding to an
uncertainty of in fractional frequency of the
standard. This scatter comes primarily from noise in the
Ramsey lineshape measurements. Larger scatter, up to
0.5 % of the Doppler bias, has been observed in the past
when the oven temperature was not well controlled.

Systematic error in the Fourier-transform method
was tested by generating theoretical Ramsey lineshapes
from (41) with an experimental velocity distribution. A
reconstructed velocity distribution was then extracted
from these lineshapes [34]. The second-order Doppler
bias computed from the original and the reconstituted
velocity distributions differed by 0.2 % or
in fractional frequency.

At a power level dB below optimum, a change
of 5 % in the Rabi frequency , corresponding to
a change of dB in microwave power, causes
the second-order Doppler bias to change by 3.5 %,
or . Our power servo maintains the power
constant to dB, reducing the uncertainty in the
second-order Doppler correction to .

Considering all these uncertainties, we assign a
Type B uncertainty of to the second-
order Doppler bias.

There is no � rst-order Doppler effect because the
exciting radiation is a standing wave and the beam
atoms are moving transversely to it. Any residual
imperfections in the standing wave or atom trajectories

can be described by small phase variations along an
atom’s path. The effects of these phase variations are
discussed in Section 4.5.

4.3 Cavity pulling

This bias arises from the variation of the microwave
� eld amplitude with microwave frequency due to
the cavity resonance or other characteristic of the
microwave circuit. The change in microwave � eld
amplitude causes a change in the signal level which
the frequency servo misinterprets as a tuning error.
The phenomenon is most easily described by partial
derivatives of the signal [40]. The relation is derived
as follows.

Near resonance, the measured signal on the two
sides of the lineshape can be approximated by

d

l
l

To the accuracy needed the signal is a symmetric
function of detuning. Hence, the derivative is
symmetric and the l derivative is antisymmetric in l .
The change in arises because depends on detuning.
This dependence is on a broader scale than the width of
the Ramsey fringe or the Rabi pedestal, so we can write

d l

The resonance condition then requires the
detuning

l
l l

where the partial derivatives are evaluated at .
The signal derivatives are just times the correspond-
ing lineshape derivatives. Our � nal expression for the
cavity pulling bias is then

d
l l

The detuning slope l is a property of the
microwave circuit, independent of the atoms. For a
cavity detuning d much less than the cavity linewidth

, it can be approximated by

l d

where is the value of at the cavity resonance.
For the Ramsey fringe the derivative can be

computed from (40) and (41). The l derivative is one
half of (47b). Neglecting compared with , the
cavity pulling bias becomes

l l
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This bias may be positive or negative depending on
the microwave power level and detuning slope. It
vanishes when the cavity is perfectly tuned, or when the
microwave power is adjusted near optimum. It increases
with modulation amplitude.

Equation (82) applies equally to the Rabi pedestal
and the Ramsey fringe. Because the cavity resonance is
much broader (megahertz) than the Rabi pedestal, we
expect l to be nearly the same for the pedestal as
for the fringe. Thus, if we can measure the shift of the
pedestal and compute the partial derivatives numerically
(or measure them), we can infer l and the shift
of the Ramsey fringe.

For the pedestal the modulation amplitude
is about times larger than for the fringe, while
the slope of the lineshape l is about
times smaller. Consequently the cavity-pulling shift
of the pedestal is about times larger than the
corresponding shift of the fringe. Although we cannot
measure the pedestal position as well, by the ratio
of slopes, we still gain one factor of . This factor
is our leverage.

Our procedure is to measure the offset of the
pedestal from the centre of the Ramsey fringe. We
obtain partial derivatives of the pedestal lineshape
from numerical evaluation of the lineshape model in
Section 3.2, or from experimental measurements. We
then solve (82) for the detuning slope l . Finally,
we evaluate (85) numerically or (82) with experimental
fringe data to obtain the cavity pulling of the fringe.

The measured pedestal offset of the NIST-7 clock
transition is about Hz with 10 % uncertainty for
a measurement time of s. The corresponding
detuning slope is about MHz. The computed
fringe shift d at typical operating conditions is

with an uncertainty of 10 %.

4.4 End-to-end cavity phase bias

This bias arises from a difference in the phase of
the microwave � eld in the two excitation regions.
If this phase difference is , the bias is given by
d p , where is the transit time of an
atom between the two excitation regions. As with
the second-order Doppler shift, must be averaged
over the velocity distribution with weighting factors for
transition probability and modulation amplitude. The
result is the ratio of transit-time integrals presented
in (47). This relation is our model for this bias. For
brevity we write the integral ratio as the coef� cient
times so that is in fractional frequency units.
A typical value for is rad.

The atoms see the end-to-end phase difference
change sign when the direction of the atomic beam
is reversed. If atom trajectories in the two beam
directions are equivalent, the magnitude of the phase
difference should remain the same. Then frequency
measurements made in both beam directions can be

combined to measure , or to remove it from the
evaluated frequency. For one measurement in each
direction the algebra is as follows [6]. Let be the
fractional frequency difference between NIST-7 and
the reference with the biases discussed in Sections 4.1,
4.2 and 4.3 removed. Then for one beam direction
we de� ne the residual fractional frequency difference
with the end-to-end phase bias also removed:

For the opposite beam direction we de� ne a correspond-
ing residual fractional frequency difference :

The biases removed to obtain may differ from those
removed to obtain , as the velocity distributions often
differ slightly in the two beam directions. Similarly,
may differ from by a few parts in 102. The Type A
uncertainty should be uncorrelated with .

If no other biases that change with beam direction
(such as microwave leakage) are present, and
should be equal. The unknown phase difference can
then be estimated by equating (86) and (87) to � nd

d

The uncertainty

d

is typically about 0.6 % of , or m rad compared
with our mrad value of . Over six years of
measurements has been stable to about 1.5 % of
its value, with no long-term trend like that observed
with NBS-6 [41]. Figure 9 shows the history of the

Figure 9. History of end-to-end cavity phase difference.
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end-to-end cavity phase difference. The abrupt change
in the summer of 1997 (MJD 50659) occurred when an
internal microwave leak was closed.

The phase difference can be eliminated by
forming a weighted average of the measurements
in the two beam directions:

The frequency measurement uncertainties in are
reduced by the combination of the two runs, just as
if they had been made under identical conditions. If
and are comparable, then the coef� cients of and
are approximately . If and are also comparable,
the uncertainty in becomes .

Our source of leverage for the end-to-end phase
bias comes from the fact that the accuracy of the
elimination of does not depend on the frequency
uncertainty, but is limited by the accuracy of the
coef� cients and . If and are in error by
d and d , then will be in error by

d
d d

which has an order of magnitude of d . From the
accuracy of the velocity distributions and power scale
we expect fractional uncertainties d of 0.1 % to
0.2 %. Uncertainties of this magnitude would translate
into an uncertainty in of about ,
smaller than d or the measurement uncertainty
in (90). More probable is that errors in power level
or velocity distribution will affect and in the
same way. That is, their uncertainties will be highly
correlated. Then d and d will partially cancel
in (91) and d will be even smaller. However, we still
assign a Type B uncertainty of to the
end-to-end phase bias.

Note that when an evaluation is performed with
frequency measurements made in only one beam
direction and a previous value for is used, we must
assign the larger uncertainty d .

When more than one measurement in a given beam
direction is available, the corresponding frequencies and

values can � rst be averaged before applying (90). In
the past we have used a trial value of and adjusted it
to minimize the scatter in the resulting values of and

. This procedure gives a result differing from (90) by
at most .

4.5 Distributed-cavity phase bias

Because the microwave cavity has small losses in its
walls, the phase of the microwave � eld varies slightly
across the beam aperture. If the atomic beam illuminates

the aperture uniformly, then the average phase over the
aperture is the relevant phase for computing the end-
to-end phase difference. But if the atomic beams in the
two directions illuminate the aperture differently, an
additional bias occurs because the average phase seen
by one beam differs from that seen by the opposite
beam. This bias is called distributed-cavity phase.

By the design of the ring-shaped De Marchi cavity
ends [17] the phase variation across our mm circular
aperture is estimated to be only a few microrads. If
the � eld mode is not centred on the aperture, a left-
right asymmetry is present. No vertical asymmetry is
expected because the mode is � xed in that direction
by the cavity walls. Let and be the average
phases over the left and right halves of the aperture,
respectively. We have measured the difference between

and by blocking one half of the aperture with a
movable mask, measuring the resonance frequency, and
repeating with the other half blocked. The difference
between the two measured frequencies is just the
coef� cient times . We have found a phase
difference of m rad for each cavity end with a 35 %
uncertainty due to the uncertainty in the frequency
measurements. Separate determinations of for the
left and right half apertures showed a change of only
0.7 % compared with the 3 % change in .

We have also measured the uniformity of
illumination of the apertures by measuring the relative
signals when one or the other mask was in place. Let

and be the fractions of the atomic beam � ux
passing through the left and right halves of the aperture
when illuminated by the far oven. Let and be the
corresponding fractions when the aperture is illuminated
by the nearer oven, but with the atoms still required to
pass through the more distant full aperture. The average
phase over the full aperture is then
for the far oven, and for the near
oven. The distributed-cavity phase bias arises from the
phase difference . It vanishes if and

(equal illumination), or if and
(perfect retrace of beams), or if

(phase symmetry). The effect occurs independently for
each cavity end. Measurements of the transmitted beam
fractions with the ovens installed in September 1999
showed that the largest asymmetry was and

for the east cavity end.
Combining the beam fraction measurements with

the phase difference measurements gave
m rad for the east end of the cavity and

m rad for the west end. Note that the
phase difference measurements were made with

and the reverse, in contrast to the observed
asymmetry. This is the source of leverage for this bias.

When frequency measurements in two beam
directions are combined by (90) to eliminate the end-
to-end cavity phase difference, we are left with a
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distributed-cavity phase bias of the form

for each cavity end. Combining our computed values
of and with the measured phase differences leads
to a net fractional frequency bias of ,
with an uncertainty of . The uncertainty is
dominated by the Type A uncertainty in the frequency
measurements.

These measurements should be repeated any
time the ovens are changed or the beam alignment
is otherwise affected. Our present results are not
applicable to evaluations before September 1999, but
the order of magnitude of the bias should have been
similar.

4.6 Gravitational red shift

This bias arises from the theory of general relativity.
An approximate solution of the theory’s equations valid
in the vicinity of the Earth equates the relative shift to
the local gravitational potential. Since the TAI second
is de� ned in terms of the rate of a clock on the
Earth’s geoid, the bias is due only to the difference
in gravitational potential between the geoid and the
location of NIST-7. This difference is adequately given
by the model

d

where is the local acceleration due to gravity and
is the height of NIST-7 above the geoid. The bias

is computed to be with an uncertainty
of [42]. It is relatively large because of
the altitude of the Boulder Laboratories where NIST-7
rests. This bias should be constant over the operational
life of the standard (barring a major earthquake). The
bias is positive because the gravitational potential of
the Earth is less negative at Boulder than on the geoid.

4.7 Black-body shift

This bias arises from non-resonant virtual excitation
of the hyper� ne levels to electronic levels (ac Stark
shift) by the black-body background radiation bathing
the atoms from the interior walls of the beam tube. Our
model is the formula calculated by Itano et al. [43],
adjusted for the improved measurement of the Stark
effect made by Simon et al. [44],

d

where is the ratio of the absolute background
temperature to K. The accuracy of (94) is about
0.2 %, limited by the input value for the dc atomic
polarizability.

For NIST-7 the internal temperature, C, gives
a fractional frequency bias of . The

uncertainty in internal temperature of C gives an
uncertainty of in this bias. The internal
temperature is controlled so that d remains stable
through many evaluations.

5. Frequency biases for which no corrections
are made

The following effects are also potential sources of
frequency bias. For each we estimate the associated bias
and show that it is too small to require a correction. We
also estimate an uncertainty for each bias to include in
our overall Type B uncertainty.

5.1 Magnetic � eld inhomogeneity

There are two mechanisms resulting in three distinct
biases introduced by magnetic � eld inhomogeneity. We
� rst present our notation for describing inhomogeneity.
Then we deduce formulae for each bias followed by
quantitative estimates.

We write the strength of the longitudinal magnetic
� eld

where is the constant nominal value of the � eld,
is a small constant describing the order of magnitude
of the inhomogeneity, and the function of the
longitudinal position is approximately unity or less.
In this section only we use angle brackets to denote
an average over the values encompassing the drift
region. The average drift region � eld is then

as all the variation is contained in .
In the following we write for the Zeeman

frequency de� ned by (5) with instead of and
d for the corresponding quadratic Zeeman effect
de� ned by (72). That is, and d are the values
when there is no inhomogeneity ( ).

5.1.1 Mean-square versus square-of-the-mean � elds

The � eld-dependent transition frequency de� ned by
(6) is dominated by the linear Zeeman effect. The
latter’s measured value becomes

meas

If this measured value is used to calculate the quadratic
Zeeman effect of the clock transition we obtain

d calc meas

d

The quadratic Zeeman bias of the clock transition is
proportional to the average of the square of the magnetic
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� eld seen by the atoms. It can be represented
by

d atom d

The difference between (98) and (99) is the bias

d square d calc d atom

d

Because this bias depends on the square of the
inhomogeneity , it becomes very small for standards
with good � eld homogeneity. For NIST-7 is about

. The square bracket in (101) is at most 0.5, but
about for the measured inhomogeneity [15]. Hence
for NIST-7 with d Hz, this bias is expected
to be about Hz, or , but certainly
not more than . This bias is independent
of microwave power and modulation.

5.1.2 Pedestal-induced bias of clock transition

The second mechanism creating a frequency bias arises
from � eld inhomogeneity where the magnetic � eld in
the excitation regions differs from the mean � eld in
the drift region. This shifts the Rabi pedestal away
from the centre of the Ramsey fringe. From (39) the
Rabi pedestal is a symmetric sum of the excitation
probabilities in the two excitation regions. The pedestal
of the clock transition then has the quadratic Zeeman
effect

d ped d

where and are the average values of in the
excitation regions. From (99) and (102) the pedestal
offset of the clock transition is

d off d ped d atom

d

where terms are neglected.
To estimate this shift we measure the pedestal offset

of the � eld-dependent transition. The linear
Zeeman effect for the pedestal is ,
compared with the Ramsey fringe effect given in (97).
The difference is the pedestal offset

d off

From (103), (104), and the de� nition of d (72), we
can write the pedestal offset for the clock transition
in terms of the pedestal offset of the � eld-dependent
transition

d off d off

Measurements with NIST-7 show that d off is about
20 Hz when the shields have been carefully degaussed,

and is about 40 kHz. Combining these in (105) we
� nd d off to be about mHz, which is too small
to easily measure.

From the theory given in Section 3.3.3 a pedestal
offset induces a bias of the Ramsey fringe given by
(51). In the present case it becomes

d inhomo d off

This bias should be added to d atom in (99).
The coef� cient is of order unity and depends on
microwave power, modulation amplitude, and velocity
distribution, as shown in (52). For NIST-7,

and at dB below optimum
power. Combining these numbers with the estimate for
d off , the bias on the Ramsey fringe is .

In the preceding discussion we ignored the pedestal
offset caused by cavity pulling. For the clock transition
pedestal this offset dominates, but for the
transition it is smaller than the inhomogeneity bias. It
can be eliminated appoximately by also measuring the
pedestal offset for the transition, then halving
the difference between the two pedestal offsets. The
cavity-pulling pedestal offset is nearly the same for the
two transitions, and so drops out of the difference [40].

5.1.3 Pedestal-induced bias of � eld-dependent transition

The pedestal shift d off also induces a bias in the
Ramsey fringe for the transition

d inhomo d off

For d off Hz, d inhomo is about Hz. If
no correction is made for this bias, it becomes part of
our experimentally measured Zeeman frequency. That
is, d inhomo must be added to meas in (97). The
quadratic Zeeman effect calculated from meas then
has a term d inhomo added to (98). This
term is approximately in our example.

5.1.4 Summary of inhomogeneity biases

Comparing the expressions for d inhomo and
d inhomo we � nd the sum of the inhomogeneity
biases
d inhomo d square

d off

The last two terms have opposite signs. The two values
of differ only because the matrix element for the

transition, and hence the associated value, is
3 % smaller than for . Actual computations at a
power dB below optimum show that the values
differ by only 1 %. Thus, the two pedestal offset
biases nearly cancel, leaving a net effect of only about

. If desired, it could be computed with an
uncertainty of 10 %.
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Because bias 1 is so small and biases 2 and
3 so nearly cancel each other, no correction for
magnetic � eld inhomogeneity is included in the reported
evaluations of NIST-7. We assign an uncertainty equal
to the net uncorrected bias of .

5.2 Rabi pulling

Rabi pulling refers to the bias caused by the overlap of a
transition lineshape by the tails of the Rabi pedestals of
the adjacent transitions in the Zeeman spectrum. From
the theory in Section 3.3.2, the bias is given by

d

where is twice the slope of the lineshape being
measured at the modulation amplitude , and
is the slope of the tails of the overlapping transitions.
If the Zeeman spectrum is symmetric, Rabi pulling
of the clock transition vanishes. Because the wings of
the Rabi pedestal decrease as detuning to the inverse
fourth power for half-sine-wave excitation (24c), and
little asymmetry is observed in the Zeeman spectrum,
Rabi pulling is very small for NIST-7.

Like cavity pulling, (109) holds for pulling of
either the Ramsey fringe or the Rabi pedestal. As the
pedestal slope is much smaller and the modulation
amplitude is much larger, Rabi pulling is very much
larger for the Rabi pedestal than for the Ramsey fringe.
By measuring offsets of pedestals from their Ramsey
fringes, we obtain leverage for observing Rabi pulling.
We obtain further leverage by making observations at
lower C-� elds to enhance the overlap, and at non-zero

values, where the neighbouring transitions are not
symmetric.

The offset of the Rabi pedestal from its Ramsey
fringe is dominated by three biases: cavity pulling, � eld
inhomogeneity, and Rabi pulling. These effects can be
separated by their dependence [40]. Cavity pulling
is approximately independent of , but has a small
even dependence due to the change in effective value
with the transition matrix elements. The inhomogeneity
contribution is linear in from the linear Zeeman
effect. For Rabi pulling we note that the pedestal tails,
given by (24c), are proportional to as their excitation
is weak. From the transition matrix elements is
proportional to . From this dependence we
deduce that the net slope of overlapping transitions
on both sides is proportional to . However, the
pedestal slope in the denominator decreases with

, strongly for . The offset of the -transition
pedestal can then be written

d off d cav

where the inhomogeneity term comes from (104) and
is a constant independent of . If we average the

offsets for and , we obtain the cavity pulling

contribution. If we take the difference between the
offsets for and and then divide by , we
are left with a constant inhomogeneity contribution plus
a Rabi pulling contribution with the -dependence
of the inverse pedestal slope. Using calculated (or
measured) values of the slope we have separated the
inhomogeneity and Rabi pulling contributions to (110)
to � nd . As an extreme example, the measured
pedestal offset of the transition at a C-� eld
for which kHz was 302 Hz. We ascribe
3 Hz to cavity pulling, 108 Hz to � eld inhomogeneity,
and 191 Hz to Rabi pulling. At our normal C-� eld,

kHz, these values are 2 Hz cavity pulling,
53 Hz � eld inhomogeneity, and 2 Hz Rabi pulling.

Once is determined by such analysis of
pedestal offsets, we can estimate Rabi pulling of the
Ramsey fringe by substituting the appropriate slope
and modulation amplitude in (109). For our extreme
example we estimate a fringe bias of 2 mHz, less than
the noise on the transition measurement.

For the clock transition to be biased by Rabi pulling
we must have an asymmetry between the and

transitions. We have observed asymmetries
in peak signal heights up to 1 %. Assuming 1 %
asymmetry as a worst case, we estimate fractional Rabi
pulling of the clock transition pedestal to be
at kHz. The corresponding fractional pulling
of the Ramsey fringe is . These small
values assure us that we could take frequency data
at this lower � eld, or any intermediate � eld, if we
wished. At our normal C-� eld, 1 % asymmetry gives

fractional pulling of the clock transition
pedestal, but only fractional pulling of the
clock transition fringe. We assign a 50 % uncertainty
to this estimate based primarily on uncertainty in the
asymmetry assumed.

5.3 Ramsey pulling

Ramsey pulling arises from weakly excited
transitions to or from an sublevel occurring in
one excitation region, while the clock transition occurs
in the other. It vanishes if the transitions are
not excited or if the Zeeman spectrum is symmetric. A
detailed calculation of Ramsey pulling is dif� cult [45]
and has not been carried out for the microwave � eld
geometry used in NIST-7. But we use this theory to
make rough estimates.

When the dominant term in Ramsey
pulling is the third one in equation (60) of [45]. It
arises from weak, non-resonant transitions from the

, sublevels to , , followed
by the clock transition. In our notation it becomes

l
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The factor comes from the matrix element for the
to transition, is

the angle between the microwave � eld vector and the
C-� eld, and the are the initial populations of the

sublevels. We have assumed that is small and
. These assumptions are valid for NIST-7.

Another contribution arises from the clock
transition followed by transitions to the ,
sublevels. Its formula is identical to (111) except that

is replaced by and the relative populations are
replaced by relative detection ef� ciencies.

As a function of Zeeman frequency, (111)
represents a damped oscillation. The period is twice that
predicted for Rabi pulling [46]. For a single velocity the
damping is slow, due only to the coef� cient. For a broad
velocity distribution the damping is rapid due to the
averaging of . As a function of microwave
power, (111) increases rapidly with a slow oscillation.
Dependence on the velocity distribution is signi� cant.

For a worst-case estimate we consider about
kHz, optimum excitation power, and

. Ramsey pulling would then be
for NIST-7 with single velocity atoms.

However, this estimate decreases to
when the velocity average is included. The C-� eld at
which NIST-7 has usually operated ( kHz),
happens to be close to a zero-crossing for Ramsey
pulling. At this C-� eld we estimate Ramsey pulling
to be only . In typical operation Ramsey
pulling may be � ve times smaller still, due to lower
microwave power and smaller asymmetry. The small
size of the cavity beam hole (small ), the symmetry
of the spectrum, and the broad velocity distribution all
combine to make Ramsey pulling much smaller for
NIST-7 than for more conventional standard designs.

5.4 Bloch-Siegert shift

This bias arises from the “anti-rotating” component of
the applied microwave � eld inducing the transitions
[47, 48, 28]. It is unavoidable except for magnetic
resonance, where circularly polarized excitation can
physically correspond to a “rotating” wave. It has the
same form as biases due to non-resonant excitation of
other atomic states by the microwave � eld, or biases
due to non-resonant sidebands on the microwave signal.
In our notation the Bloch-Siegert shift is given simply
by and is positive.

For frequency standards using Ramsey excitation
the Bloch-Siegert shift was computed long ago for
single-velocity atoms, constant excitation amplitude,
and no modulation [27]. As this bias occurs only in the
excitation regions, it can be treated by the analysis for
the inhomogeneity shift in Section 3.3.3. For constant
excitation we have from (51) and (52)

l

For half-sine-wave excitation the time-dependence
must be included. Within the excitation region the
Bloch-Siegert shift becomes

d p p

When this time-dependence is integrated in (28a) we
obtain in place of (112)

l

where . That is, is replaced by
. For typical power levels (114) is about

25 % greater than (112).
For NIST-7 at dB below optimum power

the Bloch-Siegert bias is , increasing to
at 3 dB above optimum power. The

uncertainty would be about 1 % of the bias arising
from the uncertainty in the velocity distribution and
associated value.

As caesium standards have evolved over the years
the Bloch-Siegert bias has always remained negligible.
Designs increasing the line by increasing reduce
the factor. Designs using slower atoms operate with
a smaller as is larger. Both factors decrease l .

5.5 Fluorescent light shift

There are two sources of light-shift bias arising from
near-resonant excitation of optical transitions in the
caesium atoms. One is caused by � uorescent light
emitted along the atomic beam direction by optically
excited atoms in the state selection or detection process.
The other comes from laser light mechanically scattered
into the drift region. Our model for the � rst is based
on the theoretical work of Shirley [49] which, for the
accuracy required here, has been veri� ed on two other
thermal beam machines [50, 51]. The input data are the
geometry of the standard and the operating conditions.
Under our normal operating conditions the predicted
shift is , with an uncertainty of no more than
a factor of two. There is no change we can make to
our operating conditions (pumping zone, pumping tran-
sition, light intensity or polarization or even two laser
pumping) that will make the predicted shift measurable.
One relevant experiment was conducted during the
search for collisional effects (Section 5.7). We operated
the standard with atomic beams and their associated
optical pumping simultaneously present in both beam
directions. This introduced a second major source of
scattered light. As expected from the model, we did not
see a shift in our frequency comparison greater than the
Type A uncertainty of a few parts in .

Mechanically scattered light is essentially impos-
sible to model, as one cannot quantify the location and
magnitude of the scattering sites. However, it is easy
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to vary the laser beam’s intensity over a large range
(a factor of 10) without affecting the clock operation.
We have performed these tests and see no effect at the
level of a few parts in . Hence, with our normal
beam intensities we assign a relative uncertainty of

.
A recently introduced technique to measure the

effects of light shift takes the form of a parametric test
[50]. One looks for a change in the frequency of the
standard as the microwave power and modulation depth
are varied. Following our philosophy of the evaluation
process in Section 1.1.3, we hesitate to use such a
test for quantitative analysis of any bias because it
requires a complete, quantitative knowledge of every
other bias that depends on the altered parameters. For
example, we have a small amount of microwave leakage
(Section 5.9) within the beam tube whose effects are
cancelled in the beam reversal process but whose power
dependence is not adequately modelled. For this reason
we have not used the test.

5.6 Majorana transitions

Majorana transitions are transitions between the Zeeman
sublevels of either of the hyper� ne levels. They can be
caused by inhomogeneous magnetic � elds that a moving
atom sees as rotating around the dominant C-� eld.
They can easily occur in standards with magnetic state
selection or when atoms pass through holes in magnetic
shields. Majorana transitions cause shifts only if they
create coherences among the Zeeman sublevels in a
manner asymmetric in . These coherences must then
interact with a microwave excitation � eld that has a
component perpendicular to the C-� eld. The design
of NIST-7 with the entire state-selection, excitation
and detection process performed in a single region of
highly uniform magnetic � eld, combined with the high
symmetry of sublevel populations achieved with optical
pumping, make Majorana transitions negligible.

A rough estimate of the possible bias from
Majorana transitions was made based on the theory
of Bauch and Schr Èoder [52]. The result was

. This estimate included a 1 % asymmetry
between the and populations and a
factor 4 reduction for the velocity average of phases
dependent on transit time. The bias must also be
averaged over trajectories through the beam aperture.
As beam � ux measurements through the right and left
halves of the beam aperture showed a 20 % asymmetry
in one case, we have used a factor 5 reduction. We
have made no restriction on the degree of coherence
generated, so our estimate is still conservative.

Like Rabi and Ramsey pulling, a bias due to
Majorana transitions would increase rapidly as the
C-� eld is reduced due to the reduced detuning of the
microwave p -transitions. The absence of any signi� cant
bias, other than those discussed in Section 4, when we
operated at kHz, is further assurance that
these biases are very small.

5.7 Collisional shifts

Collision-induced frequency biases have never been
observed in thermal atomic beam standards. However,
some qualitative arguments have been put forward
[53, 29, 54] that suggest collisional effects might be
signi� cant at our level of accuracy. To our knowledge
the frequency bias for caesium collisions has never
been treated theoretically for the case of thermal
atomic beams. We thus have no quantitative model
for estimating the bias.

In Section 5.6.2(D) of [29] the authors present a
model for a rough estimate of the bias due to scattering
from background caesium atoms. We have carried
out resonance � uorescence experiments to search for
background caesium atoms within the beam tube. We
operated one atomic beam optically pumped into the

state but with the microwave excitation turned
off. The detection laser downstream was then moved
around to look for atoms in the state travelling in
directions different to that of the beam atoms. The laser
windows constrained us to look only in regions very
close to the atomic beam. Within the limits imposed by
the Lorentzian tails of the resonance from unpumped
atoms in the beam, we could detect no background.
This means that in the detection region the background
density cannot be more than 1 % of that in the atomic
beam, or Pa. While we could not make
measurements directly in the drift region of the beam
tube, the geometry of the standard is such that the
background caesium pressure in that region could not
be orders of magnitude larger than in the detection
region. Even using Pa as an upper bound to
the possible background pressure in the model of Vanier
and Audoin [29], we arrive at a bias of only
for interactions with background caesium atoms.

An additional experiment was carried out operating
NIST-7 with the opposing atomic beam active. This is
possible because pumping the opposing beam to the

hyper� ne level allows it to traverse the detection
zone for the observed beam without � uorescing. The
density in the beams is so low that we see no attenuation
of the observed beam due to the opposing beam.
Furthermore, no frequency bias was observed within the

Type A uncertainty of the measurements. If
the collision bias obeys a semi-classical model (Chap. 3
in [29]), it is proportional to , where is the density,

is the relative velocity, and is the cross-section. The
opposing beam increases by two and by about 5. So
even if decreases by a factor of 2 at the higher relative
velocities, the bias would have been increased by a
factor of 5. However, the atoms experiencing the larger
bias from opposing beam collisions may be scattered
out of the beam and not detected. So the opposing beam
experiment may only increase the background density
without giving additional information.

Because of the speculative nature of the above
arguments, we have assigned an uncertainty of
to the collisional bias.
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5.8 Beam-� ux variation

If the atom or laser beam � ux, hence the signal
level, is changing slowly and the frequency servo
always measures the same side of the lineshape � rst,
a frequency bias results. The bias is given simply by

d , where is the time rate of
change of the signal, d is the time interval between
measurements on the two sides of the line, and is
twice the signal slope at the detuning of the modulation.
A linear decrease of 10 % in signal over a 12-hour
measurement causes a bias less than . We have
reduced this bias by controlling the temperature of the
caesium oven so that the maximum observed change
in the clock signal amplitude is less than 10 % over a
24-hour period. Furthermore, the frequency servo now
alternates which side of the Ramsey fringe it measures
� rst, eliminating the effect of slow linear changes in the
signal. We assign an uncertainty of less than
to this effect.

5.9 Microwave leakage

When caesium atoms interact with coherent excitation
� elds in regions outside the microwave cavity, the
relative phases of the hyper� ne amplitudes can be
altered so that the centre of the Ramsey fringe is biased.
Radiation from sources not related to the standard
are not important because even a small difference
in frequency causes the relative phase of the induced
transition to quickly average to zero. Therefore, we need
concern ourselves only with sources of radiation from
the microwave synthesis chain, the delivery system
external to the beam tube, and microwave structures
within the beam tube. Radiation originating outside the
beam tube travels through the laboratory over multiple,
unstable pathways to ports where it couples into the
beam tube. Because the phase of this radiation is
uncontrolled, we � nd its presence totally unacceptable.
With a sensitive, heterodyne detector we can detect
and then reduce all such external sources of radiation
to acceptable levels [55, 9]. The initially constructed
microwave system induced shifts of order . We
have been able to reduce that leakage by 50 dB. As
the leakage bias is roughly proportional to the square
root of the leaked power, we believe that any bias from
external microwave leakage is now less than .

Within the beam tube, a low level of leakage from
joints in the microwave plumbing is more tolerable.
The design of NIST-7 allows beam reversal simply by
changing the current to the oven heaters. The external
location of the ovens keeps thermal gradients well away
from the cavity. As no mechanical motion is involved,
any leakage � eld remains stable in amplitude and phase.
This argument is supported by the observed long-term
stability of the end-to-end phase difference shown in
Figure 9.

A leakage model shows that the leakage bias has
the order of magnitude of the strength of the leakage
� eld in units of Rabi frequency. Further, to produce a
bias, the leakage � eld must be out of phase with the
� eld inside the cavity and have an asymmetric spatial
distribution along the atomic beam. Graphite pieces,
placed in the beam tube to absorb caesium, also absorb
microwaves, creating net travelling waves of leakage
� elds. Travelling waves have components out of phase
with the � eld inside the cavity. Leakage from the centre
of the microwave cavity or equally from joints at each
end is symmetric and does not cause a bias. Leakage
from one end does. But the bias caused by spatial
asymmetry changes sign with reversal of the atomic
beam direction.

Our model of the microwave leakage bias
was partially veri� ed experimentally by intentionally
introducing leakage � elds through an unused electrical
feedthrough at one end of the vacuum chamber. We
were able to introduce frequency biases of a few parts
in . These were cancelled by beam reversal to
better than 1 %. Thus, if the change in end-to-end phase
difference seen in Figure 9 was due to a reduction of
microwave leakage, our results prior to the change were
in error by no more than .

5.10 DC Stark effect

This bias arises if the atoms are subjected to a static
(or low-frequency) electric � eld while their resonance
is being measured. It is a quadratic effect due to the
atomic polarizability . A recent measurement with a
caesium fountain [44] gives the following relation

d Hz V m

Thus, a fractional frequency bias of is realized
with a � eld V m. Since the internal structures
of NIST-7 are separated by the order of m in the
drift region, a potential difference of V would be
required to generate such a � eld. Although the major
parts of NIST-7 are insulated from each other to avoid
current loops, they are all connected to a common
ground at one place. This design creates a Faraday
cage within which there should be no � elds.

In spite of this careful design there are two
possibilities for static � elds to exist within the beam
tube. One is charge accumulation on the insulating � lm
used to isolate the cavity from its support structure. This
material is an excellent insulator capable of supporting
tremendous surface charge. However, all the insulating
� lm is trapped between conducting metal surfaces with
zero potential difference. The only exception to this
is the few millimetres of material that may protrude
around the edges. In the absence of any source of
directed, high-energy electrons, we believe that there
is no way for charge to accumulate on these pieces of
exposed material. The random occurrence of charged
particles cannot lead to a large charge build-up because
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subsequent low-energy particles would be repelled
by the smallest of charges on the insulating � lm.
Furthermore, � eld lines from any such charge would
terminate on the adjacent metallic surfaces and not
extend across the beam line.

The second area of possible concern involves
something called “patch” effects on the metal surfaces
very near the atomic beam. The only such surfaces in
NIST-7 are the holes in the microwave cavity through
which the atomic beam passes. The base material is
electroformed copper. However, it is covered with a
rather thick layer of oxide. Investigations performed
in relation to studies of the gravitational potential on
charged particles [56] indicate that surface potentials of
the order of V can be expected and these will vary
on a spatial scale of order micrometres. This situation
can generate � eld gradients of the order of V m
but they extend only micrometres into the atomic beam.
Furthermore, they exist over only about 1 % of the
atomic beam length. Hence, fractional frequency shifts
greater than are not expected from this effect.

5.11 Biases related to electronics

To reach our target uncertainty of we must
determine the centre of the Ramsey fringe with an
uncertainty less than one millionth of its width. We
have identi� ed two main sources of frequency biases
that occur with the slow square-wave digital frequency
servo: microwave sideband pulling and demodulator
errors. We discuss each type of bias below.

5.11.1 Microwave spectrum

Discrete sidebands in the spectrum of the microwave
radiation may produce errors in the measurement of
the centre of the Ramsey resonance [57]. RF sideband
pulling was studied using NIST-7 by intentionally
modulating the microwave signal in both amplitude
and phase to produce a well-de� ned spectrum [22].
To determine the magnitude of the rf sideband bias
under operating conditions, it is suf� cient to record the
amplitude-modulated sideband spectrum alone [21].

Our measurements indicate that the rf sideband
bias for NIST-7 is

d

We have found that spurious sidebands are produced
most often by improper grounding of the microwave
signal path. Therefore, we discuss the grounding of the
microwave synthesis chain electronics below.

Ground loops

We use the term ground loop to refer to the electric
circuit formed by, as well as the current � owing in, a
continuous, low-impedance path formed from a system
of conductors. These conductors may include structural

metal parts of the chassis, equipment racks, and even
the vacuum system, as well as cable shields. Oscillating
magnetic � elds, especially at the frequency of the power
mains, can induce alternating currents within such a
circuit. Electrical connections between subassemblies
of the physics package are discussed in Section 2.1.
Here we describe proper connection of the synthesizer
components to the laboratory ground reference.

The microwave synthesis chain is divided into
subsystems that are electrically isolated from one
another at low frequencies while maintaining low
insertion loss and low leakage at high frequencies.
The MHz signal from the reference oscillator is
transmitted to the primary standards laboratory from
a high-isolation distribution ampli� er [58] in another
room. In addition, transformers are used to electrically
isolate the MHz transmission line. The direct
digital synthesizer (DDS) that provides slow square-
wave modulation is optically isolated from the servo
computer’s data bus. Its connection to the synthesis
chain is isolated at low frequencies by a transformer.
Following the synthesis chain, a computer-controlled
attenuator is used to actively stabilize the microwave
power level. As this circuit requires a very low
servo bandwidth, it is isolated from the computer’s
digital-to-analogue converter with a differential-input
instrumentation ampli� er. Isolating the beam tube from
the power servo is, however, more dif� cult. Traditional
devices that block direct current paths emit unacceptable
amounts of radiation at GHz. We have developed a
unique waveguide dc blocking device that presents an
impedance of k to low frequencies with an insertion
loss of just a few tenths of a decibel at GHz.

5.11.2 Modulation-synchronous errors

The slow square-wave frequency servo determines the
centre of the Ramsey lineshape using the resonance
condition (46)

A bias occurs if the signal measured at one side of the
lineshape is shifted by an amount d with respect to
the signal from the other side. With a change to the
software, the digital servo can be used to measure biases
of this type [23]. The integral controller described in
Section 3.4 is replaced by a proportional controller.
The servo loop is then interrupted in a way that
both removes the frequency dependence of the error
signal and emphasizes the bias of interest. The resulting
measured frequency has the bias (62)

d d

for a proportional servo using the ideal gain . In order
for this bias to be less than , d must not
exceed m , corresponding to of one least
signi� cant bit (LSB) of the analogue-to-digital converter
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(ADC) used to digitize the clock signal. This level of
performance might seem unreasonable given a typical
ADC differential non-linearity of LSB. However,
we have demonstrated the ability of our demodulator
to measure error signals at this level [23].

Below, we present modi� cations of the servo loop
that test for potential sources of demodulator bias. We
stress that it is important to make as few changes as
possible to the hardware and software during these bias
measurements so that the results may be applied to the
normal operation of the standard.

Demodulator bias

The digital servo performs many functions that are
synchronous with the measurement of the Ramsey
resonance. These tasks involve transmission of
signals throughout the servo electronics. Therefore the
� uorescence photodetector, preampli� er, and analogue-
to-digital converter must be tested to ensure that they
are not affected by the operation of the digital servo.
These systems were tested by blocking both the atomic
beam and the detection laser. The measured frequency
bias from coupling of the modulation sequence to the
photodetection and digitizing electronics is

d

Laser amplitude-modulation bias

This bias occurs if the intensity of the detection laser
changes synchronously with the frequency modulation
by the frequency servo. To measure laser amplitude
modulation the atomic beam is blocked. Laser light is
then scattered into the detection region of the standard
by an etched glass � lter. Suf� cient light is scattered
to reproduce the nominal signal level. The measured
fractional frequency bias from demodulator-correlated
amplitude modulation of the laser is

d

5.11.3 Switching transients

When the frequency servo software sends a modulation
command to the DDS, the beam tube must be
permitted to reach steady-state before the clock signal
is measured. During the blanking interval the clock
signal is discarded. Afterwards, the clock signal is
recorded during the acquisition interval . If the
frequency of the synthesis chain were to change
instantaneously, the blanking interval would be selected
so that the slowest atoms would have time to clear the
Ramsey cavity. The subsequent measurement would
involve only those atoms that had seen the same
microwave frequency in each end of the Ramsey cavity.

However, the frequency does not change instan-
taneously. There are delays within the DDS due to
processing of frequency commands. In addition there

are delays due to the settling time of the MHz
phase-locked loop [22] and the photodetector. These
additional settling times extend the blanking interval to

Here is the response time of the DDS, that is, the time
from the transmission of a frequency command to the
actual change in frequency at the DDS output. is the
phase-settling time of the MHz phase-locked loop
(Figure 3), is the transit time of the slowest atoms
across the Ramsey cavity to the detection region, and
is the photodetector’s settling time. As the phase-locked
loop steers the MHz quartz oscillator to the new
modulation point, the frequency sweeps over the peak
of the Ramsey resonance. This produces a brief pulse
of � uorescent light in the optical detection region. Time

is chosen so that the resulting photocurrent transient
settles prior to the acquisition interval. For the present
con� guration of the digital servo, ms and

s.
Using the method of Section 5.11.2, we have

measured the fractional frequency bias due to
microwave switching transients. The most signi� cant
non-zero bias measured was

d

This measurement was made on only one side of the
lineshape, so may be partially or fully cancelled by the
same effect on the other side of the lineshape.

6. Measurement statistics

In the preceding two sections we discussed at length our
known biases and assigned their Type B uncertainties. In
the context of (1) we have yet to examine the stability
of the reference oscillator and the behaviour of our
measurement noise. We also need to assign the Type A
uncertainty for an evaluation. These topics are treated
below.

6.1 Reference oscillator stability

Figure 10 shows typical Allan deviations for NIST-7,
for a reference oscillator, and for the synthesis chain.
The upper trace shows the stability of NIST-7 relative to
a hydrogen maser reference oscillator. The middle trace
shows the stability of the reference oscillator compared
with an ensemble of � ve similar masers [59]. The lower
trace shows the stability of the microwave synthesis
chain. This latter trace was obtained by comparing
two similar synthesizers driven by the same reference
oscillator [21]. These data indicate that, for the duration
of an accuracy evaluation or bias test (several days),
the uncertainty of the frequency comparison is limited
by the measurement noise of NIST-7. To ensure that
this is true for any particular frequency comparison, we
continuously compare the frequency of the reference
oscillator with the maser ensemble.
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Figure 10. Comparison of Allan deviations for NIST-7, for
a reference oscillator, and for the synthesis chain.

6.2 Noise character

The signals fed to the frequency servo contain noise.
Sources of this noise include shot noise from the random
arrival of atoms in the detection region; amplitude-
modulated, frequency-modulated and pointing noise on
the detection laser; noise in the photodetector, or in
the analogue-to-digital converter; and the Dick effect
[60]. Most of these sources can be controlled at a
level below that of the atomic shot noise. Shot noise
is expected to be white, i.e. to have no correlation
with itself except at the same time [29]. To verify
that our signal noise is white, we have measured the
autocorrelation function of the error signal with the
servo feedback to the synthesis chain disabled. The
results, shown in Figure 11, are perfect correlation at
zero time interval, and zero correlation for non-zero
time intervals. These are the white-noise assumptions
made in (61).

The theory in Section 3.4 predicts that the servo
translates white error signal noise into white
frequency noise on the output time series . This
frequency noise does not reside in any electronic signal
from the standard, but in the numbers generated
and stored by the servo computer. These numbers are
analysed to � nd the mean frequency and its Type A
uncertainty.

We routinely compute the Allan deviation (66) of
the and always observe a slope, consistent
with white frequency noise. This behaviour persists for
measurement times of up to at least three days. A
sample is shown in Figure 10. Although these results
do not prove white frequency noise for all times,
none of our tests has shown any departure from this
characteristic.

Figure 11. Autocorrelation of digital servo noise. Only the
correlation at zero time difference is signi� cant.

Dead time is introduced into our frequency meas-
urements by the blanking time in signal observation
and by the operation of the C-� eld and power servos.
A special feature of white frequency noise is that the
Allan variance is independent of any dead time in
the measurements [38, 61]. No modi� cation of the
processing of the is required to account for these
dead times. Even the dead time required to reverse the
atomic beam can be ignored.

6.3 Type A uncertainty

An estimate of the uncertainty in the mean frequency
of a measurement comes from the variance of the mean

where is the sample variance

and is the number of elements in the time series. This
estimate corresponds to the Allan variance extended
to the length of the time series. is unbiased only
if the autocorrelation of vanishes for (see
Figure 11) and if the digital servo employs the ideal
servo gain (64). In the past we have operated with
a servo gain less than . But now we measure ,
with an uncertainty of no more than 5 %, prior to
each frequency measurement. The servo uses this gain
for up to 12 hours, then measures it again. Thus, we
may use (123) as an unbiased estimate of the Type A
uncertainty for .
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We can extend this analysis to multiple measure-
ments that may not contain the same biases or Type A
uncertainty. First we remove all known biases from
each frequency measurement to obtain an unbiased
frequency . From a set of unbiased frequencies we
can then compute a mean

where is the number of frequency measurements in
the set and the optional are relative weights for the

, assigned according to their respective uncertainties.
Our estimate for the Type A uncertainty for is given
by

where

is the Type A uncertainty we then assign to the
mean frequency .

As a test of the variance we collected sets
of up to � fty unbiased frequencies from 12-hour
measurements that had similar variances. These sets
included measurements made over several months.
From each group of measurements made only a few
days apart (part of the same evaluation) we � rst
removed the mean of those measurements to leave
nominally random residuals. We thereby eliminated
long-term drift of the reference oscillator from the
residuals in a set. The variance of these residuals was
then within 10 % of the variance .

7. Evaluation process

An evaluation of NIST-7 is a series of measurements
that both compares the frequency of the standard
with that of the reference oscillator (hydrogen maser)
and determines the biases. A complete evaluation
determines all known biases, and includes tests for
unexpected biases. This is a never-ending task. In
practice we conduct routine evaluations that determine
only the major biases that may change from one
evaluation to the next. Between routine evaluations we
make measurements to reduce the uncertainty of known
biases and search for previously unknown biases.

7.1 Routine evaluations

A routine evaluation is carried out over a period of
several days and repeated every sixty days. It includes
several frequency measurements plus the auxiliary
measurements for determination of the biases described
below. The results of a routine evaluation are reported
to the BIPM and published in the Time Section’s
Circular T [62].

7.1.1 Frequency measurements

A frequency measurement is made in a continuous run
extending for many hours (typically 12) to reduce the
Type A uncertainty. The result is a time series of
several thousand numbers, each representing a single
value of the frequency difference de� ned by (1).

When a measurement has been completed, the
mean and standard deviation of all the numbers
is computed. There may be a few quite far from the
mean. This can be caused by, for example, a cosmic
ray passing through the detector photodiode. If any
deviate by more than 5 standard deviations from the
mean, they are discarded and the mean and standard
deviation are recomputed. (We rarely see more than 3
discarded numbers in a set of about .) The Allan
deviation of the data is also calculated and plotted as a
routine check of the noise type.

Throughout the frequency measurement process the
C-� eld is determined by measuring the frequency
of the � eld-dependent transition every s.
The C-� eld servo holds to a constant value that is
recorded in the data � le along with the servo corrections
and the . The frequency is used to calculate the
quadratic Zeeman bias as described in Section 4.1. Most
evaluations have been made at a C-� eld of m T,
corresponding to kHz.

The microwave power is also periodically measured
and then held constant by the digital power servo
(Section 2.2.3). Our experience with the synthesis chain
shows that one measurement every 5 min is suf� cient
to hold the uncertainty in the power below dB.

We make most frequency measurements at a
microwave power dB below optimum power and a
modulation amplitude of 27 Hz. Unlike standards using
magnetic state selection, our broad velocity distribution
allows the excitation probability (the factor
in (46)) and the modulation amplitude (the
factor in (46)) to become the velocity-determining
elements. At powers below optimum we preferentially
excite slower atoms, which produce a narrower Ramsey
fringe. As the microwave power is reduced the signal
level decreases, but line narrowing dominates until
several decibels below optimum power. From computer
simulations using an experimental velocity distribution
we � nd that the slope of the Ramsey fringe has a
maximum at dB below optimum power, while the
stability is best at dB below optimum power. These
extremes are broad, so little is lost by operating at
slightly different values. Another reason we operate
below optimum power is that most power-dependent
biases decrease with microwave power.

7.1.2 Ramsey lineshape measurements

The Ramsey fringe lineshape is recorded before
and after each frequency measurement. The signal
amplitude is measured at discrete excitation frequencies
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starting at line centre and progressing in equal steps
to a detuning where the side lobes have damped
out. Only one side of the lineshape is recorded
since the asymmetry is smaller than the noise in the
measurements. The lineshape measurements are made at
four different power levels: dB; dB; dB;
and dB relative to optimum power. From these
measurements we extract a transit-time distribution
and Rabi frequency by the Fourier-transform method
[34]. The second-order Doppler correction d , cavity
pulling d , and end-to-end phase shift coef� cient
are then calculated as described in Sections 4.2, 4.3
and 4.4.

7.1.3 Zeeman spectrum measurements

Frequency measurements of the lines in the Zeeman
spectrum are made once with each beam reversal, at
a microwave power dB below optimum. A brief
(200 s) measurement of the centre frequency of the
Ramsey fringe is made for each line. The centre
frequency of the Rabi pedestal is then measured for
1000 s. This gives typical uncertainties in fractional
frequency of for the Ramsey fringe and

for the Rabi pedestal.
We have published a detailed analysis of pedestal

offsets for the Zeeman lines in [40]. From the offset of
the clock transition pedestal we obtain an estimate of
the cavity detuning slope needed for determining cavity
pulling (Section 4.3). From the average of the offsets for
the and pedestals we obtain a measure
d off of the C-� eld inhomogeneity (Section 5.1).
This is used not only to estimate inhomogeneity biases,
but also to check how well the shields have been
degaussed.

The signal at the peak of each line is also measured
and recorded to give a quantitative measure of the
asymmetry of the spectrum. Observed asymmetries
between the and lines are less than
1 %.

7.1.4 Electronics tests

Prior to each routine evaluation we test for spurious
amplitude and frequency modulation of the 9 GHz
radiation. We also perform a search for external
microwave leakage. In the past these tests were carried
out only occasionally, but they have proved to be so
sensitive to minor changes in the electronics that we
now perform them before each evaluation.

7.1.5 Summary of evaluation results

For each frequency measurement of an evaluation
we remove the sum of biases given by (71) to leave the
unbiased frequency . The biases are not necessarily
the same for all . The C-� eld and velocity distribution
often change a little between measurements, while the

end-to-end phase bias changes sign with beam reversal.
From these unbiased frequencies we then compute a
mean and variance by the relations (125) and (126).
Recalling (1), we interpret as the frequency difference
between the de� nition and the reference oscillator. We
assign as the Type A uncertainty associated with

. These results, along with a summary of the biases
removed and the Type B uncertainty, are reported to
the BIPM.

The uncertainty for a typical 12-hour
measurement has varied from to ,
depending on the signal strength and the duty cycle of
the servo. Our evaluations have contained from six to
ten or more 12-hour measurements. Hence our reported
Type A uncertainty has varied from to as
little as .

7.2 Tests for additional biases

Few unambiguous methods exist for � nding additional
biases. Some special techniques, described in Sec-
tion 5.11.2, will reveal speci� c electronic biases. But
otherwise we are limited to parametric measurements:
changing some operating condition and looking to see
whether there is an unmodelled change in frequency.

Since over half of the known biases depend on
microwave power, we make a few measurements at a
higher power level, dB or dB above optimum
power, as part of each routine evaluation. The second-
order Doppler bias and the end-to-end phase bias each
increase by about one part in with this change in
power. In the east-to-west beam direction these changes
add, but in the west-to-east beam direction they nearly
cancel each other. After removal of these two biases
and cavity pulling the residual frequencies should be
independent of microwave power if our models are
correct. In the past we have found an unexplained power
shift of up to 4 parts in between measurements at

dB below and dB above optimum power. This
has led us to look for other biases that are sensitive to
power. Since the upgraded servo computer code was
installed, power shifts, if present, have been no larger
than the Type A uncertainty. We attribute this change
to an improvement in the way that the main frequency
servo treats the optical transient following a cycle
of the C-� eld servo. For biases linear in microwave
power, such as Rabi pulling, Ramsey pulling, or rf
sideband pulling, their effect on the frequency at

dB below optimum power is just times the
observed frequency difference between measurements

dB below optimum and dB above optimum.
The ability to make this large change in microwave
power gives us some leverage in looking for unknown
power-dependent biases. However, microwave leakage
has a different power dependence.

We have carried out many other parametric tests,
some of which are described elsewhere in this paper.
We have changed the modulation frequency, depth and
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even the modulation sequence and duty cycles. We have
changed the entire servo code. We have changed the
laser power, polarization, beam size, pumping transition
and zone in the beam tube. We have changed the
number of lasers used (from a single laser for both
pumping and detecting to separate lasers), the type
of laser (from extended-cavity to DBR type), and the
laser frequency-control system (from low-frequency
modulation to an rf sideband technique). We have
altered the atomic beam trajectory by the use of movable
masks placed in the beam. We have altered the C-� eld
strength and direction. We have changed the way the
electronics are packaged and cabled. We have even
changed the laboratory temperature and humidity. None
of these parametric tests has yielded frequency changes
signi� cantly larger than their Type A uncertainty.

8. Summary and discussion

In the preceding sections we have described in detail
the procedures we use to evaluate NIST-7. We have
introduced the concept of an idealized frequency
measurement (1) where all the biasing effects can be
separated from pure, white noise effects and where the
frequency of a reference oscillator can be expressed
directly in terms of the SI second. We use this
framework to guide our routine evaluations.

We evaluate all known biases by leveraged
experiments that relate through a model some more
easily measured quantity to the bias of interest. We
have discussed the biases considered and the validity of
the models used in their evaluation. This has allowed us
to reduce the uncertainty on the individual biases below
the Type A uncertainty of our frequency measurements.

Our approach has allowed us to reserve parametric
measurements for model veri� cation and the search for
“hidden” biases. We vary all manner of conditions to
include the type and set-up of the lasers, the cabling
of the various components of the servo system, and the
environment of the standard. If we have taken care of all
signi� cant biases, these variations should have no effect
on the output frequency. While this philosophy for the
operation of a primary standard places a great burden
on the operator, we believe this is not a shortcoming
of the technique. On the contrary, it represents the only
technique we know to search for the unknown and
often extremely subtle biases that exist in systems of
this complexity.

In accordance with the requirements of (1) we
monitor the noise residuals from all our frequency
measurements for any indication of an unknown bias.
We use the Allan variance as a routine check on
individual frequency measurements. We have described
other analytical techniques we have used to investigate
the noise behaviour over different time intervals.
During uncertainty evaluations, we never observe any
indication of a noise type other than white.

Tables 3 and 4 summarize all the biases we have
considered and their uncertainties. All uncertainties are
quoted as 1 .

Table 3. Relative frequency biases and their standard
uncertainties.

Physical effect 15 Bias 15 Uncertainty

Second-order Doppler 1
Second-order Zeeman 5 0.1
Cavity pulling 0.6
Cavity phase (end-to-end) 0.7
Cavity phase (distributed) –1.3 0.4
Black body 0.3
Gravitation 0.1

Uncorrected biases 0 3.2

Combined Type B uncertainty 3.5

Table 4. Standard uncertainties for uncorrected biases.

Effect 15 Uncertainty

Magnetic � eld inhomogeneity 0.03
Rabi pulling 0.02
Ramsey pulling 0.002
Bloch-Siegert shift 0.3
Fluorescent light shift 0.5
Majorana transitions
Collisions 1.0
Beam � ux variation 0.1
Microwave leakage
DC Stark shift 0.01
Spectral purity 0.1

Modulation synchronous effects
Detector/demodulator 1.0
AM on laser 1.0
Switching transients 2.0

Combined Type B uncertainty 3.2

The major uncertainties in biases due to physical
effects are in the second-order Doppler and end-to-
end cavity phase biases. These uncertainties are limited
by how well we can determine velocity distributions
and compute the relevant velocity averages. They are
a consequence of using a broad velocity distribution.
However, our overall Type B uncertainty is dominated
by uncertainties in electronic biases. This is a
consequence of the unprecedented degree to which we
split the Ramsey fringe: almost three parts in .

These uncertainties have changed from our
previous publications [5, 6]. The changes come from
additional measurements made since 1994, upgrades
for the lasers, electronics and software, and better
understanding of some biases. The uncertainties for
the end-to-end phase bias and for electronic biases
have been greatly reduced. More biases have been
considered.

Because of the indirect means we use to evaluate
the biases, their associated uncertainties are expected
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to be highly uncorrelated. For this reason, we use the
root sum of squares of all the individual uncertainties
as our total Type B uncertainty. The result is

. Combining this with our smallest Type A
uncertainty of for a routine evaluation, we
arrive at a combined standard uncertainty (CSU) of

. This value represents our “best possible”
performance, not our typical uncertainty. For many
routine evaluations, especially those before MJD 51500,
we did not achieve the uncertainties shown in Table 3
because some bias had not been adequately studied,
or the standard was not operating under optimal
conditions, e.g. only one active atomic beam was
available.

Figure 12 shows the results of every reported
evaluation of NIST-7. The data represent the departure

of the duration of the second measured by various
primary standards from the realization of the SI second
as calculated by the BIPM [63, 64]. These data include
noise from the instability of TAI, of the primary
standards, and from time transfer to the BIPM. From
the NIST to the BIPM the transfer noise is about

over a 30-day interval [65]. The cavity-
tuned hydrogen maser reference allows the few days
encompassed by a NIST-7 evaluation to be extended to
30 days without signi� cant additional uncertainty [65].
The change in level of CS2 in 1995 (MJD 49900) was
due to inclusion of the black-body bias, a bias always
included in NIST-7 evaluations. The change in level of
all the standards between MJD 50400 and 50900 was
due to the gradual steering of TAI to accommodate the
black-body bias.

When we � rst started reporting to the BIPM in
1994, our frequency measurements rapidly changed
by a total of , larger than our then
reported uncertainty of . No single cause
was ever pinpointed for this change. It occurred as our
electronics were improved, external microwave leakage
was eliminated, and our evaluation procedures were
re� ned. Reduced atom-beam � ux in late 1996 caused
larger Type A uncertainties and reduced stability. The

Figure 12. Comparison of NIST-7 and other primary
standards with TAI. The data include transfer noise.

scatter in NIST-7 evaluations late in 1997 and early
1998 suggested that we then had an uncontrolled bias.
Our evaluation techniques had also not yet matured to
the level reported in this paper.

In the summer of 1998 a source of internal
microwave leakage was closed. Improved servo-control
was implemented in late 1999. Since then, the variance
between TAI and NIST-7 has been smaller. The two
low points in mid-1999 (MJD 51300-51400) and the
high point in April 2000 (MJD 51661) were made
with data in only one beam direction and have CSUs
of and , respectively. But for
two-beam evaluations our reported combined standard
uncertainty has now been reduced to , close
to our estimate of the “best possible” uncertainty
achievable with NIST-7. We undoubtedly still have
unknown biases, perhaps related to the electronics or to
the optical pumping. But the agreement of NIST-7 with
recent evaluations of our in-house caesium fountain
NIST-F1 [24] (also shown in Figure 12), suggests that
any remaining unidenti� ed biases are no larger than our
reported combined standard uncertainty.
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