Passion and Precision: Adventures of a Time-Nut

Tom Van Baak
tvb@LeapSecond.com

DCC, September 2013

About tvb

- Tom Van Baak (Bellevue, WA)
- Education: math, physics, computers
- Profession: software engineer (kernel)
- Passion: electronics, technology, precise time \& frequency

Outline

- 0 Introduction to T\&F
- 1 The best clock
- 2 Powers of ten
- 3 GREAT adventure

Time \& Frequency hobby

- An innocent beginning, 20 years ago
- LED clock project, quartz timebase
- how accurate is it?
- how to measure it?
- Use frequency counter
- how accurate is it?
- how to measure it?

Accuracy

- 0.01/10.00 MHz = 0.1\% (86 sec/day)
- 0.0001/10 = 10 ppm (0.8 sec/day)

More accuracy

- Better timekeeping needs better timebase
- Better measurement requires better counter and/or better reference
- What does it mean to "keep" time?
- who's time are we actually keeping?
- how does WWVB work; or GPS?
- what is UTC; how good are atomic clocks?
- This time stuff is all so interesting

The quest for better oscillators

The quest for more digits

FLபKE PM6680B HIGH RESOLUTION PROGRAMMABLE TIMERICOUNTER
7.997979799^{5}
FREQ A

CRS STANFORD RESEARCH SYSTEMS \rightleftharpoons MODEL SR620 $\bar{\Longrightarrow}$ UNIVERSAL TIME INTERVAL COI 7999997.97995

(5)

Slippery slope

- More oscillators, more test equipment
- Oscillator measurement and comparison - quartz, rubidium, cesium standards
- Improve counter speed and resolution - microseconds, nanoseconds, picoseconds
- Books, articles, op/svc manuals, HPJ
- anything about precise time \& frequency
- Help! I've got the "time bug"

Home time lab

- So now I have quite the time lab
- Mostly used test equipment (eBay)
- Old boat-anchors (fascinating, historical)
- Oscillators, frequency counters, phase comparators, phase noise analyzers
- WWV, WWVB, GPS receivers, GPSDO
- TCG, IRIG displays, nixie clocks, hp

Home time \& frequency lab

Museum of hp clocks

HP quartz

- 105B
 - 107BR
 - 106B
 - 104AR
 - 103AR
 - 101A
 - 100ER

HP clocks

- HP01
- 571B
- 5321
- 117A
- 114BR
- 115BR
- 113AR

HP cesium \& rubidium

- 5071A
- 5065A
- 5062c
- 5061B
- 5061A
- 5060A

Vintage hp 5061A (eBay)

FYI: cesium (caesium)

- Cesium atomic clocks are not radioactive
- They use natural, stable Cs_{133} atoms, not the scary man-made radioisotope Cs_{137}
- Analogy: C_{12} vs. C_{14}
- "hyperfine" transition
- 9,192,631,770 Hz
- Solid / liquid metal

Hobby status

- House full of time \& frequency gear
- high-precision experiments now easy to do
- I help amateur friends, world-wide
- Most modern technology depends on:
- precise time synchronization
- stable frequency references
- The T\&F niche is deep and fascinating
- reading, collecting, experimenting, sharing

Outline

- 0 Introduction to T\&F
- 1 The best clock
- 2 Powers of ten
- 3 GREAT adventure

What is the best clock?

- Best for timekeeping?
- Or other considerations:
- size, operating voltage, power, price
- jitter, phase noise, Allan deviation, drift
- lifetime, reliability, harsh environments
- temperature, humidity, pressure, acceleration
- auto-, medical-, mil-, space-qualified
- rack-mount or portable

Is there a best timekeeper?

- Quartz: inaccurate and drifts
- Rubidium vapor: more stable but still drifts
- Cesium beam: better still and no drift
- Hydrogen maser: most stable, small drift
- UTC itself is "average" of 345 clocks
- Exotic fountain, ion, optical clocks
- No one best clock, no perfect time

"Keeps perfect time"

Which watch is best?

- You go shopping for watches at lunch...

Which clock do you want?

- Checking each day, at precisely noon:
- (a) (b) (c) (d)
- 12:00:00 12:01:30 12:03:30 12:06:11
- 12:00:00 12:01:40 12:03:25 12:07:22
- 12:00:00 12:01:20 12:03:30 12:08:33
- 12:00:00 12:01:10 12:03:35 12:09:44
- 12:00:00 12:01:40 12:03:30 12:10:55
- Which one do you want to buy?

Which clock do you want?

- Answer:
- (a) is probably a stopped watch
- (b) is most accurate, but more variable
- (c) is less accurate, but less variable
- (d) is least accurate, but very stable
- Watch (d) is exactly 1:11 fast per 24 h
- "regulate", or simply apply math correction
- then you have the best watch

Best wristwatch

Measurement

- The more stable the clock, the more precise the measurement needs to be
- Two oscillators are never identical:
- are you looking close enough?
- or, are you waiting long enough?
- Compare clocks
- measure frequency directly, or
- measure slow phase drift between oscillators

Allan deviation

- Mean, standard deviation, regression
- Clock performance can be more complex $-2^{\text {nd }}$ difference method is useful - notion of sampling interval is useful
- Allan deviation incorporates both - measure of frequency instability (sigma) - as a function of sampling times (tau)
- prediction of clock stability in future (past)

Collect, measure, experiment

- No end to time \& frequency experiments
- Oscillator phase noise measurements
- Accuracy, stability, long-term drift rates
- Measure frequency counter resolution
- Test WWVB, GPS receivers, GPSDO
- Try clock ensembles, your own UTC
- Write lab reports, share with others

Outline

- 0 Introduction to T\&F
- 1 The best clock
- 2 Powers of ten
- 3 GREAT adventure

Powers of ten - introduction

- Not all clocks are super accurate
- Any periodic event can be a clock
- How regular the occurrence determines how good or bad the clock is
- The range of precision/stability is huge

Fractional units

- 1 second / day
- 3 seconds / month
- 1 second / month
- 1 second / year
- 1 ms [millisecond] / day $=\sim 10^{-8}$
- $1 \mu \mathrm{~s}$ [microsecond] / day $=\sim 10^{-11}$
- 1 ns [nanosecond] / day $=\sim 10^{-14}$
- 1 second $/ 3,000,000$ years $=\sim 10^{-14}$

"Powers of Ten" - inspiration

- Charles and Ray Eames (1977)
- "the effect of adding another zero"

Powers of Ten ${ }^{\text {TM }}$ (1977)
EamesOffice Subscribe

10^{-0} drip, drip

- Leak in ceiling
- 0.57 s ... 9.9 s
- 1.7 Hz ... 0.1 Hz

10^{-1}
 heart beat

- $10^{-1}, 0.1,10 \%$
- The original '1 PPS'
- Sometimes $2 x$, even $3 x$
- Much higher stability at night
- < 10\% accuracy possible

10^{-1} heart beat
- 12 h frequency plot (evening/night)
- ADEV floor is 10^{-1} from 10^{1} to $10^{4} \mathrm{~s}$!
- (is this OK?)

10^{-2} tuning fork oscillator

-0.01, 1\%

- General Radio Type 213 Audio Oscillator
- 1 'kc'; f = ~992.8 Hz
- $\pm 1.3 \mathrm{mHz}(60 \times 1 \mathrm{~s})$
- Accuracy < 1\%
- Count those 9's
- ADEV is $10^{-6} \ldots 10^{-4}$

10^{-2} tuning fork oscillator

10^{-3} precision tuning fork

- 0.001, 0.1\%, 1 ms/s
- General Radio Type 813
- 1 ' kc' tuning fork
- $\mathrm{f}=\sim 999.4 \mathrm{~Hz}$
- $\pm 400 \mu \mathrm{~Hz}(60 \times 1 \mathrm{~s})$
- Accuracy < 0.1\%
- ADEV is $10^{-7} \ldots 10^{-4}$

10^{-3}
 precision tuning fork

10^{-4} mechanical oscillator

- 0.01\%, 100 ppm
- Mechanical oscillator
- "Four 9's"

999.907,211,67	Hz	
999.907, 250,33	Hz	
999.907, 273,16	Hz	
999.907,311,01	Hz	
999.907, 250,27	Hz	
999.907,345,09	HzHz	
N : 60	60	
151.812 uHz		
MEAN : 999.90	7,159,334	Hz
MAX : 999.907,	7,404,05	Hz
MIN : 999.90	6,840,54	Hz
999.907,392,20	Hz	
999.907,415,25	Hz	
999.907,354,85	Hz	

10^{-5}
 mains (line frequency)

- 0.001\%, 10 ppm
- $60 \pm \mathrm{Hz}$

-70,120,	Hz
60.009,491,393,8	Hz
60.000,431,181,6	Hz
59.992,198,219,9	Hz
59.987,371, 509,5	Hz
59.993,148,200,6	Hz
59.999, 032,462,5	Hz
59.985, 892,634,1	Hz
59.995, 727, 396, 2	Hz
N : 36	
STD DEU: 0.006,765	5,596,40 Hz
MEAN : 59.999,5	54,563,23 Hz
MAX : 60.010,3	90,980,5 Hz
MIN : 59.985,8	92,634,1 Hz
59.996,011,518,6	Hz

60 Hz Mains Frequency Deviation Histogram 2.7 million one second samples (~ 1 month)

10^{-5}
 mains (line frequency)

tvb

10^{-6}
 quartz watch (RC)

- 0.0001\%, 1 ppm, $1 \mu \mathrm{~s} / \mathrm{s}$
- $+160 \mathrm{~ms} / \mathrm{d}=+1.85 \mathrm{ppm}$

quartz watch (RC)

- Nightly WWVB radio sync (60 kHz)
- Look closely at 01:30 AM PST
- +1h +30m +15s
- Plot of 9 days
- Rate variations
- Sync variations

10^{-7}
 chronometer

- 0.1 ppm
- Rated $1 / 4 \mathrm{sec} /$ day deviation

10^{-7} chronometer

- ~55 hour runtime
- 200 ms phase residuals
- ADEV 6×10^{-7}

10^{-7} chronometer

- From 1940's USN manual...
- Phase
- Dial error
- Frequency
- Daily rate
- Drift
- Deviation in rate

COMPUTATION OF RATE					
Date	$\begin{gathered} \text { Dial Error } \\ +=\text { Fast } \\ -=\text { Slow } \end{gathered}$		Daily Rate $\begin{aligned} & +=\text { Gain } \\ & -=\text { Loss } \end{aligned}$	Mean Deviation in Daily Rate	Remarks
	Min	Sec			
Of 718					
3	+0	2			Stant $\mathrm{l}_{\text {cest }}$
4	+0	$2 \dot{1}$	$+1 / 2$		
5	+0	$2 \frac{1}{2}$	0	$\frac{1}{4}$	
6	+0	3	$+1 / 2$	$1 / 4$	
7	+0	3	0	$1 / 4$	
8	+0	312	+ $1 / 2$	1/4	
9	-	-	-	4	ntwound
10	+0	4	+ $1 / 4$	-	2day ang
(Mean daily rate $=+1 / 4$ second)					
In Table I, there will be noted a column headed "Mean Deviation in Daily Rate." The					

10^{-8}

pendulum clock

- 0.01 ppm, 10 ppb $10 \mathrm{~ns} / \mathrm{s}, 864 \mu \mathrm{~s} / \mathrm{d}$
- Shortt,

Fedchenko,
Riefler,
'Littlemore’

pendulum clock

- Amazing astronomical pendulum clocks
- Several centuries of understanding and perfection. Limitations addressed:
- temperature, humidity, mass, friction, metallurgy, escapement, master/slave, vacuum, isochronous suspension, etc.
- When all factors solved, the best pendulum clock is just a good gravimeter

10^{-8}
 pendulum clock

earth

- 0.001 ppm
- Slow by ~2 ms per day
- Also somewhat irregular
- ADEV $10^{-8} \sim 10^{-9}$
- Limited by core, weather, climate
- Lunar/solar tides, periodic variations
- Tidal friction, long-term drift

10^{-9}

earth

10-9
 earth clock

- Long-term plot (300 years)
- Length of day (LOD) is 86,400 seconds \pm a few milliseconds

10^{-9}
 earth clock

- Short-term plot (3 recent years)
- LOD is about $86,400.002$ seconds

10^{-9} earth clock

Filtering of the Length of Day: trend, seasonnal variation and residuals

10^{-9}

earth frequency standard

- Suggested improvements:
- Thoroughly clean, and dry with cloth
- Remove surrounding gas and water vapor
- Wait for core to cool before use
- Re-align axis of rotation (wobbling)
- Keep away from nearby moon (tides)
- Keep away from sun (tempco)
- Re-adjust rate (avoid leap seconds)

10^{-10} осхо

- $0.1 \mathrm{ppb}, 100 \mathrm{ps} / \mathrm{s}, 8.64 \mu \mathrm{~s} / \mathrm{d}$
- $10^{-10} \ldots 10^{-13}$ short
- $5 \times 10^{-10} / \mathrm{d} d r i f t$

Allan Deviation $\sigma_{y}(\tau)$

Ch A: 5.0 MHz 2.7 Vpp
Averaged Phase

10^{-11} good ocxo

- $0.01 \mathrm{ppb}, 10 \mathrm{ps} / \mathrm{s}, 864 \mathrm{~ns} / \mathrm{d}(\sim 1 \mu \mathrm{~s} / \mathrm{d})$
- $10^{-11} \ldots 10^{-13}$ short
- $\sim 10^{-11} / \mathrm{d}$ drift

10^{-12} excellent ocxo

- 1 ppt, 1 ps/s, $86.4 \mathrm{~ns} / \mathrm{d}(\sim 100 \mathrm{~ns} / \mathrm{d})$
- -10^{-13} short/mid
- $-3 \times 10^{-12} / \mathrm{d}$ drift

10^{-12} excellent ocxo

- Oscillator on a string, swinging
- Acceleration sensitivity
- Tilt
- Turnover
- $\pm 9.8 \mathrm{~m} / \mathrm{s}^{2}$

10^{-13} rubidium

- $8.64 \mathrm{~ns} / \mathrm{d}(\sim 10 \mathrm{~ns} / \mathrm{d})$
- -10^{-13} mid-term
- $-1 \times 10^{-11} / \mathrm{m}$ drift

10^{-13} hp 106B quartz

- Best hp quartz
- $-4 \times 10^{-13} / \mathrm{d}$ drift

Ch A: 5.0 MHz $2.8 \mathrm{~V}_{\mathrm{pp}}$ Averaged Phase

Ch B: $5.0 \mathrm{MHz} 2.6 \mathrm{~V}_{\mathrm{pp}}$ $B / A=$ Single $D D S$

10^{-14} cesium

- $864 \mathrm{ps} / \mathrm{d}(\sim 1 \mathrm{~ns} / \mathrm{d})$
- -10^{-13} mid-term
- $\sim 1 \times 10^{-14}$ @ 1 day
$\underset{\substack{10-10}}{\substack{\text { ormmosersese }}} \quad$ Allan Deviation $\sigma_{\mathbf{y}}(\tau)$

10^{-14} more cesium

- 10^{-14} not!
- Cesium clocks differ by $2 x-50 x$
- Vintage 5060A

Allan Deviation $\sigma_{y}(\tau)$

10^{-14} another cesium

- Not even close to $10^{-14} @ 1$ day
- FTS 4010
- Portable clock

10^{-14} BVA quartz

- $10^{-13} \ldots 10^{-14}$ short-term
- $10^{-11} \ldots 10^{-12} / \mathrm{d}$ drift
- Best quartz

10^{-15} active h-maser

- $86.4 \mathrm{ps} / \mathrm{d}$
- Near $1 \times 10^{-15} @ 1 d$
- Most stable

\quad Allan Deviation $\sigma_{y}(\tau)$

Ch B: 5.0 MHz 3.4 Vpp $B / A=$ Single DDS
10^{-15} active h-maser

- M.A.S.E.R. = Microwave Amplification by Stimulated Emission of Radiation
- As in LASER (Light)...
- Means of Acquiring Support for Expensive Research
10^{-15}

cesium, long-term

- High-performance model
- Pair $\sim 2 \times 10^{-14}$ at a day
- Flicker floor $\sim 5 \times 10^{-15}$ in weeks

Powers of ten - summary

- 10% to $10^{-15}-15$ orders of magnitude

Outline

- 0 Introduction to T\&F
- 1 The best clock
- 2 Powers of ten
- 3 GREAT adventure

Relativity, clocks, and time

- Einstein said gravity affects time itself!
- Theory of relativity; clocks; time dilation
- S.R. - high speed slows time down
- moving clocks run slower than...
- G.R. - strong gravity slows time down
- lower clocks run slower than...
- higher clocks run faster than...
- Can this be tested with atomic clocks?

Relativity at home

- Cannot take clocks at high enough speed - no rockets or planes at home
- But can take clocks to high elevation
- we have mountains
- Mt Rainier road
- Paradise Inn

The great idea

- Take our 3 kids and 3 cesium clocks up Mt Rainier
- See if Einstein was right about gravity and time
- See if clocks really run faster up there

Project GRE²AT

- General Relativity Einstein/Essen Anniversary Test (2005)
- 100 ${ }^{\text {th }}$ anniversary (Einstein) theory of relativity
$-50^{\text {th }}$ anniversary (Essen) first cesium clock
- Opportunity to:
- put my atomic collection to interesting use
- perform fun (unusual) activity for children
- similar experiments first performed in 1970's

Math Detail

- To a first approximation, small v, small h
- Kinematic: $\quad \Delta f_{k} \approx-1 / 2 v^{2} / \mathrm{c}^{2}$
- Gravitation: $\Delta \mathrm{f}_{\mathrm{g}} \approx+\mathrm{gh} / \mathrm{c}^{2}$
- Sagnac:
- Net freq
- Total time $\Delta \mathrm{f}_{\mathrm{s}} \approx-\omega \mathrm{R}^{2} \cos ^{2}(\phi) \cdot \lambda / \mathrm{c}^{2}$
$\Delta f=\Delta f_{k}+\Delta f_{g}+\Delta f_{s}$
$\Delta \mathrm{T}=\sum \Delta \mathrm{f} \times \mathrm{T}$

Back of envelope calculation

- According to GR, clock frequency changes according to height difference, h $\approx \mathrm{gh} / \mathrm{c}^{2}$
- On earth, this is
$\approx 1.09 \times 10^{-16} /$ meter
- Units: $\mathrm{s} / \mathrm{s} / \mathrm{m}$
- Infinitesimal!

From NPL website

10^{-16} way is too small, but

- If you go up 1 km instead of 1 m , then $\Delta f=1.1 \times 10^{-13}=0.11 \mathrm{ps} / \mathrm{s}$
- And stay up there 24 hours, then $\Delta \mathrm{T}=\Delta \mathrm{f} \times 86400 \mathrm{~s}=9.5 \mathrm{~ns}$
- 9 ns is "huge"; so this looks possible!
- Gravitational time dilation rule-of-thumb 10 ns / day / km

Key parameters

- Location
- how high
- how long
- Clocks
- how stable
- how many
- Counters
- how precise

Bellevue to Mt Rainier

- Just 100 miles away ($\sim^{1 ⁄ 2} 2$ hours)

The GREAT trip, day 1

- Carrying clock downstairs. Limited time; car is a mess, but it works.

The GREAT trip, day 1

- Clocks in the middle, batteries on the floor, and instrumentation in the front.

The GREAT trip, day 1

- Kids in the back. Dad making final clock BNC connections; Mom says goodbye.

The GREAT trip, day 1

- Detail of TIC's and laptop in front seat and clocks in middle seat. 23:33:48 UTC

The GREAT trip, day 1

- Final gas stop and evening arrival in Rainier National Park.

The GREAT trip, day 2

- Paradise Inn is at 5400' elevation. Large parking lot to hide in.

The GREAT trip, day 2

- Classic old Northwest inn; you should visit sometime.

The GREAT trip, day 2

- Wonderful hiking trails and climbing. Lucky to have clear weather.

The GREAT trip, day 2

- Avoid a ticket and move the car again. Ouch, running low in fuel. Now what.

The GREAT trip, day 3

- Got gas at 6 AM. Used 15.78 gal in $34 \mathrm{~h}=$ 0.46 gph; ~2h/gal, so about 1 ns/gal.

The GREAT trip, day 3

- More hiking, exploring, playing. It's a fun place for a while.

The GREAT trip, day 3

- 42 hours is up; time to leave. We're all tired. Can this really work? Go home.

The GREAT trip, day 3

- Carry clocks \& TIC back inside, reconnect same cables, resume phase comparison.

Two questions

- Results unknowable until return
- (1) Did we see any time dilation?
- requires before/after time-rate comparison
- comparison against stable "house" clock
- (2) Did the results match prediction?
- requires record of altitude and duration
- used Garmin GPS NMEA RS232 log

Plots from GPS Log

- Latitude, Longitude

Plots from GPS Log

- Altitude, Velocity

Predictions from GPS Log

- SR (velocity): 50 ps
- Sagnac effect: ± 150 ps (net 1 ps)

Predictions from GPS Log

- GR (gravitational): 22.37 ns

Elevation and predicted dilation

Clock time results

- Red
20.3 ns

Project GREAT - Single Clock - Red
3 (pre) +2 (trip) +9 (post) $=14$ days

Clock time results (mean)

- Mean
23.2 ns
- ± 4 ns
- Predict 22.4 ns

Project GREAT - 3 x Composite Clock
3 (pre) +2 (trip) +9 (post) $=14$ days

3-hat, residuals (home)

- $\mathrm{Cs}_{\mathrm{i}}-\mathrm{Cs}_{\mathrm{i}}$ via lab reference

3 clocks using '3-hat'

3-hat, residuals (away)

- $\mathrm{Cs}_{\mathrm{i}}-\mathrm{Cs}_{\mathrm{i}}$ via mutual-comparisons

3 clocks using '3-hat'

3-hat, residuals (combined)

- $\mathrm{Cs}_{\mathrm{i}}-\mathrm{Cs}_{\mathrm{i}}$

3 clocks using ' 3 -hat'

Final graph (3+2+3 days)

Kids, Clocks, and Relativity on Mt Rainier
Three Cesium Clocks: Red Green Blue \& Mean

Final graph (3+2+3 days)

Kids, Clocks, and Relativity on Mt Rainier
Three Cesium Clocks: Red Green Blue \& Mean

Project GRE²AT - summary

- Theory of relativity confirmed by a family science experiment with cesium clocks
- time dilation is real, just as Einstein predicted
- came back tired and 22ns older
- Atomic clocks are tomorrow's altimeters - what time is it?
- what time was it?
- where time was it?

Thank you!

- John Ackermann
- Steve Bible, Stan Horzepa, DCC
- time-nuts mailing list
- Contact: tvb@LeapSecond.com

