Passion and Precision: Adventures of a Time-Nut

Tom Van Baak tvb@LeapSecond.com

DCC, September 2013

About tvb

- Tom Van Baak (Bellevue, WA)
- Education: math, physics, computers
- Profession: software engineer (kernel)
- Passion: electronics, technology, precise time & frequency

Outline

- 0 Introduction to T&F
- 1 The best clock
- 2 Powers of ten
- 3 GREAT adventure

Time & Frequency hobby

- An innocent beginning, 20 years ago
- LED clock project, quartz timebase

- how accurate is it?

– how to measure it?

• Use frequency counter

- how accurate is it?

- how to measure it?

Accuracy

- 0.01/10.00 MHz = 0.1% (86 sec/day)
- 0.0001/10 = 10 ppm (0.8 sec/day)

More accuracy

- Better timekeeping needs better timebase
- Better measurement requires better counter and/or better reference
- What does it mean to "keep" time?
 - who's time are we actually keeping?
 - how does WWVB work; or GPS?
 - what is UTC; how good are atomic clocks?
- This time stuff is all so interesting

The quest for better oscillators

The quest for more digits

SES STANFORD RESEARCH SYSTEMS	MODEL SR620	UNIVERSAL TIME INTERVAL COL
qqqq	9999	9995
GHzs/MHz ms/kHz		s/mHz ps/sHz
TIME ISTARTO	AUTO	REL HIST SCALE AUTO

Slippery slope

- More oscillators, more test equipment
- Oscillator measurement and comparison – quartz, rubidium, cesium standards
- Improve counter speed and resolution

 microseconds, nanoseconds, picoseconds
- Books, articles, op/svc manuals, HPJ – anything about precise time & frequency
- Help! I've got the "time bug"

Home time lab

- So now I have quite the time lab
- Mostly used test equipment (eBay)
- Old boat-anchors (fascinating, historical)
- Oscillators, frequency counters, phase comparators, phase noise analyzers
- WWV, WWVB, GPS receivers, GPSDO
- TCG, IRIG displays, nixie clocks, hp

Home time & frequency lab

Museum of hp clocks

HP quartz

- **105B**
- 107BR
- **106**B
- 104AR
- 103AR
- 101A
- 100ER

HP clocks

- HP01
- 571B
- **5**321
- **117**A
- 114BR
- 115BR
- 113AR

HP cesium & rubidium

- **5071A**
- **5065A**
- **5062c**
- **5061B**
- **5061A**
- **5060A**

Vintage hp 5061A (eBay)

FYI: cesium (caesium)

- Cesium atomic clocks are *not* radioactive
- They use natural, stable Cs₁₃₃ atoms, not the scary man-made radioisotope Cs₁₃₇
- Analogy: C₁₂ vs. C₁₄
- "hyperfine" transition
- 9,192,631,770 Hz
- Solid / liquid metal

Hobby status

- House full of time & frequency gear
 - high-precision experiments now easy to do
 - I help amateur friends, world-wide
- Most modern technology depends on:
 - precise *time* synchronization
 - stable *frequency* references
- The T&F niche is deep and fascinating – reading, collecting, experimenting, sharing

Outline

- 0 Introduction to T&F
- 1 The best clock
- 2 Powers of ten
- 3 GREAT adventure

What is the best clock?

- Best for timekeeping?
- Or other considerations:
 - size, operating voltage, power, price
 - jitter, phase noise, Allan deviation, drift
 - lifetime, reliability, harsh environments
 - temperature, humidity, pressure, acceleration
 - auto-, medical-, mil-, space-qualified
 - rack-mount or portable

Is there a best timekeeper?

- Quartz: inaccurate and drifts
- Rubidium vapor: more stable but still drifts
- Cesium beam: better still and no drift
- Hydrogen maser: most stable, small drift
- UTC itself is "average" of 345 clocks
- Exotic fountain, ion, optical clocks
- No one best clock, no perfect time

"Keeps perfect time"

Which watch is best?

• You go shopping for watches at lunch...

Which clock do you want?

- Checking each day, at precisely noon:
- (a) (b) (c) (d)
- 12:00:00 12:01:30 12:03:30 12:06:11
- 12:00:00 12:01:40 12:03:25 12:07:22
- 12:00:00 12:01:20 12:03:30 12:08:33
- 12:00:00 12:01:10 12:03:35 12:09:44
- 12:00:00 12:01:40 12:03:30 12:10:55
- Which one do you want to buy?

Which clock do you want?

- Answer:
 - (a) is probably a stopped watch
 - (b) is most accurate, but more variable
 - (c) is less accurate, but less variable
 - (d) is least accurate, but very stable
- Watch (d) is exactly 1:11 fast per 24h

 "regulate", or simply apply math correction
 then you have the best watch

Best wristwatch

Measurement

- The more stable the clock, the more precise the measurement needs to be
- Two oscillators are *never* identical:
 are you looking close enough?
 or, are you waiting long enough?
- Compare clocks
 - measure frequency directly, or
 - measure slow phase drift between oscillators

Allan deviation

- Mean, standard deviation, regression
- Clock performance can be more complex

 2nd difference method is useful
 notion of sampling interval is useful
- Allan deviation incorporates both
 - measure of frequency instability (sigma)

- as a function of sampling times (tau)

• prediction of clock stability in future (past)

Collect, measure, experiment

- No end to time & frequency experiments
- Oscillator phase noise measurements
- Accuracy, stability, long-term drift rates
- Measure frequency counter resolution
- Test WWVB, GPS receivers, GPSDO
- Try clock ensembles, your own UTC
- Write lab reports, share with others

Outline

- 0 Introduction to T&F
- 1 The best clock
- 2 Powers of ten
- 3 GREAT adventure

Powers of ten – introduction

- Not all clocks are super accurate
- <u>Any</u> periodic event can be a clock
- How *regular* the occurrence determines how *good* or *bad* the clock is
- The range of precision/stability is huge

Fractional units

- 1 second / day
- 3 seconds / month
- 1 second / month
- 1 second / year = -3
- 1 ms [*milli*second] / day = ~10⁻⁸
- 1 µs [*micro*second] / day = ~10⁻¹¹
- 1 ns [*nano*second] / day = ~10⁻¹⁴
- 1 second / 3,000,000 years = $\sim 10^{-14}$

- = ~1.2 × 10⁻⁵
- $= 10^{-6} = 1 \text{ ppm}$

$$= ~3.8 \times 10^{-7}$$

$$= -3.2 \times 10^{-8}$$

"Powers of Ten" - inspiration

- Charles and Ray Eames (1977)
 - "the effect of adding another zero"

10⁻⁰ drip, drip

- Leak in ceiling
- 0.57 s ... 9.9 s
- 1.7 Hz ... 0.1 Hz

Kitchen Ceiling Water Drip 8 PM 13-Nov-2006 PST (MJD 54052)

10⁻¹ heart beat

- 10⁻¹, 0.1, 10%
- The original '1 PPS'
- Sometimes 2x, even 3x
- Much higher stability at night
- < 10% accuracy possible

U	2	v	
6	1	0	
6	1	0	
6	2	ō	
ň	5	ň	
ă	5	ň	
2	4	×	
b	Ś	Ų	
6	4	0	
6	5	0	
6	5	Ô	
ň	5	ñ	
ž	Ē	ň	
2	÷	ž	
b	4	U	
6	3	0	
6	2	0	
6	0	Ô	
6	ō	ō	
č	ŏ	ň	
L E	Z	×	
2	a	ų	
6	0	0	
6	Û	Û	
6	-1	Ô	

10⁻¹ heart beat

- 12 h frequency plot (evening/night)
- ADEV floor is 10^{-1} from 10^{1} to 10^{4} s!
- (is this OK?)

10^{-2} tuning fork oscillator

- 0.01, 1%
- General Radio Type 213
 Audio Oscillator
- 1 'kc'; f = ~992.8 Hz
- ±1.3 mHz (60 x 1 s)
- Accuracy < 1%
- Count those 9's
- ADEV is 10⁻⁶...10⁻⁴

992.897	,388,71	HZ	
992.896	, 598, 37	HZ	
992.896	,556,22	HZ	
992.896	,560,05	Hz	
992.897	,374,78	Hz	
N	: 60		
STD DEV	: 0.001,	,387,672 ⊦	z
MEAN	: 992.89	98,857,676	i Hz
MAX	: 992.90	01,768,32	Hz
MIN	: 992.89	96,168,74	Hz
992.898	,234,03	Hz	
992.898	,247,28	Hz	
992.897	,293,73	Hz	
000 007	EG4 7E	1.1-	

10⁻² tuning fork oscillator

10^{-3} precision tuning fork

- 0.001, 0.1%, 1 ms/s
- General Radio Type 813
- 1 'kc' tuning fork
- f = ~999.4 Hz
- ±400 µHz (60 x 1 s)
- Accuracy < 0.1%
- ADEV is 10⁻⁷...10⁻⁴

999.401	. 910. 97		
999.463	,932,59	Hz	
999.464	,159,16	Hz	
999.465	,063,84	Hz	
999.463	,826,22	Hz	
999.464	,577,00	Hz	
N	: 60		
STD DEV	: 478.778	3 uHz	
MEAN	: 999.464	4,134,273	Hz
MAX	: 999.46	5,477,73	Hz
MIN	: 999.463	3,290,13	Hz
999.464	,657,58	Hz	
999.464	,554,46	Hz	
000 464	- AAZ AE		

10⁻³ precision tuning fork

10⁻⁴ mechanical oscillator

- 0.01%, 100 ppm
- Mechanical oscillator
- "Four 9's"

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
999.907	,211,67	Hz	
999.907	.250.33	Hz	
999.907	273.16	Hz	
999 907	211 01	HZ	
	, 244, 24	112	
999.907	,250,27	HZ	
999.907	345.09	Hz	
N	: 60		
STD DEV	151.81	2 uHz	
MEAN	: 999.90	7.159.334	Hz
MAX	: 999.90	7,404,05	Hz
MIN	: 999.90	6.840.54	Hz
999.907	,392,20	Ĥz	
999.907	,415,25	Hz	
999,907	354.85	Hz	
000 007	1150101		

10⁻⁵ mains (line frequency)

- 0.001%, 10 ppm
- 60± Hz

60.003,640,(20,5	HZ
60.009,491,393,8	Hz
60.000,431,181,6	Hz
59.992,198,219,9	Hz
59.987,371,509,5	Hz
59.993,148,200,6	Hz
59.999,032,462,5	Hz
59.985,892,634,1	Hz
59.995,727,396,2	Hz
N : 36	
STD DEV: 0.006,76	5,596,40 Hz
MEAN : 59.999,5	54,563,23 Hz
MAX : 60.010,3	90,980,5 Hz
MIN : 59.985,8	92,634,1 Hz
59.996,011,518,6	Hz
FO 000 FOC 100 7	

60 Hz Mains Frequency Deviation Histogram 2.7 million one second samples (~1 month)

10⁻⁵ mains (line frequency)

10⁻⁶ quartz watch (RC)

- 0.0001%, 1 ppm, 1 µs/s
- +160 ms/d = +1.85 ppm

10⁻⁶ quartz watch (RC)

- Nightly WWVB radio sync (60 kHz)
- Look closely at 01:30 AM PST
- +1h +30m +15s
- Plot of 9 days
- Rate variations
- Sync variations

10⁻⁷ chronometer

- 0.1 ppm
- Rated ¼ sec/day deviation

10⁻⁷ chronometer

- ~55 hour runtime
- 200 ms phase residuals
- ADEV 6×10-7

10⁻⁷ chronometer

- From 1940's USN manual...
- Phase
 - Dial error
- Frequency
 Daily rate
- Drift
 - Deviation in rate

Date	Dial Error + = Fast - = Slow		Daily Rate + = Gain - = Loss	Mean Deviation in Daily	Remarks
	Min	Sec		Rate	
ot 1948	1				
3	+0	2			Startel+Set
4	+0	2%	+ 1/2		
5	+0	2 1/2	0	4	
6	+0	3	+ 1/2	1/4	
7	+0	3	0	Y4	
8	+0	31/2	+ 1/2	1/4	
9	-	-	_		Not wound
10	+0	4	+ 1/4	-	2 day ang.
	(Me	an dai	ly rate = -	+1/4 secor	nd)

10⁻⁸ pendulum clock

- 0.01 ppm, 10 ppb 10 ns/s, 864 µs/d
- Shortt,
 Fedchenko,
 Riefler,
 'Littlemore'

10^{-8} pendulum clock

- Amazing astronomical pendulum clocks
- Several centuries of understanding and perfection. Limitations addressed:
 - temperature, humidity, mass, friction, metallurgy, escapement, master/slave, vacuum, isochronous suspension, etc.
- When all factors solved, the best pendulum clock is just a good gravimeter

10⁻⁸ pendulum clock

10⁻⁹ earth

- 0.001 ppm
- Slow by ~2 ms per day
- Also somewhat irregular
- ADEV 10⁻⁸ ~ 10⁻⁹

- Limited by core, weather, climate
- Lunar/solar tides, periodic variations
- Tidal friction, long-term drift

10⁻⁹ earth

10⁻⁹ earth clock

- Long-term plot (300 years)
- Length of day (LOD) is 86,400 seconds ± a few milliseconds

10^{-9} earth clock

- Short-term plot (3 recent years)
- LOD is about 86,400.002 seconds

10⁻⁹ earth clock

10^{-9} earth frequency standard

- Suggested improvements:
 - Thoroughly clean, and dry with cloth
 - Remove surrounding gas and water vapor
 - Wait for core to cool before use
 - Re-align axis of rotation (wobbling)
 - Keep away from nearby moon (tides)
 - Keep away from sun (tempco)
 - Re-adjust rate (avoid leap seconds)

58

10⁻¹⁰ ocxo

- 0.1 ppb, 100 ps/s, 8.64 µs/d
- 10⁻¹⁰...10⁻¹³ short
- 5×10⁻¹⁰/d drift

10⁻¹¹ good ocxo

- 0.01 ppb, 10 ps/s, 864 ns/d (~1 µs/d)
- 10⁻¹¹...10⁻¹³ short
- ~10⁻¹¹/d drift

10⁻¹² excellent ocxo

- 1 ppt, 1 ps/s, 86.4 ns/d (~100 ns/d)
- ~10⁻¹³ short/mid
- ~3×10⁻¹²/d drift

DCC 2013

10⁻¹² excellent ocxo

- Oscillator on a string, swinging
- Acceleration sensitivity
- Tilt
- Turnover
- ±9.8 m/s²

10⁻¹³ rubidium

- 8.64 ns/d (~10 ns/d)
- ~10⁻¹³ mid-term
- ~1×10⁻¹¹/m drift

10⁻¹³ hp 106B quartz

Best hp quartz
~4×10⁻¹³/d drift

10⁻¹⁴ cesium

- 864 ps/d (~1 ns/d)
- ~10⁻¹³ mid-term
- ~1×10⁻¹⁴ @ 1 day

10⁻¹⁴ more cesium

- 10⁻¹⁴ not!
- Cesium clocks differ by 2x 50x
- Vintage 5060A

DCC 2013

10⁻¹⁴ another cesium

- Not even close to 10⁻¹⁴ @ 1 day
- FTS 4010
- Portable clock

10⁻¹⁴ BVA quartz

- 10⁻¹³...10⁻¹⁴ short-term
- 10⁻¹¹...10⁻¹² /d drift
- Best quartz

10⁻¹⁵ active h-maser

- 86.4 ps/d
- Near 1×10⁻¹⁵ @1d
- Most stable

10⁻¹⁵ active h-maser

- M.A.S.E.R. = Microwave Amplification by Stimulated Emission of Radiation
- As in LASER (Light)...
- Means of Acquiring Support for Expensive Research

10⁻¹⁵ cesium, long-term

- High-performance model
- Pair $\sim 2 \times 10^{-14}$ at a day
- Flicker floor ~5×10⁻¹⁵ in weeks

Powers of ten – summary

• 10% to $10^{-15} - 15$ orders of magnitude

Outline

- 0 Introduction to T&F
- 1 The best clock
- 2 Powers of ten
- 3 GREAT adventure
Relativity, clocks, and time

- Einstein said gravity affects *time* itself!
- Theory of relativity; clocks; time dilation
- S.R. *high speed* slows time down – moving clocks run slower than...
- G.R. strong gravity slows time down
 lower clocks run slower than...
 - higher clocks run faster than...
- Can this be tested with atomic clocks?

Relativity at home

- Cannot take clocks at high enough speed
 no rockets or planes at home
- But can take clocks to high elevation
 - we have mountains
 - Mt Rainier road
 - Paradise Inn

The great idea

- Take our 3 kids and 3 cesium clocks up Mt Rainier
- See if Einstein was right about gravity and time
- See if clocks really run faster up there

Project GRE²AT

- General Relativity Einstein/Essen Anniversary Test (2005)
 - 100th anniversary (Einstein) theory of relativity
 - 50th anniversary (Essen) first cesium clock
- Opportunity to:
 - put my atomic collection to interesting use
 - perform fun (unusual) activity for children
 - similar experiments first performed in 1970's

Math Detail

- To a first approximation, small v, small h
- Kinematic: $\Delta f_k \approx -\frac{1}{2} \sqrt{C^2}$
- Gravitation: $\Delta f_a \approx +gh/c^2$

- Total time $\Delta T = \sum \Delta f \times T$
- Sagnac: $\Delta f_s \approx -\omega R^2 \cos^2(\phi) \cdot \lambda / c^2$ • Net freq $\Delta f = \Delta f_k + \Delta f_q + \Delta f_s$

Back of envelope calculation

- According to GR, clock frequency changes according to height difference, h
 ≈ gh/c²
- On earth, this is ≈ 1.09×10⁻¹⁶/meter
- Units: s/s/m
- Infinitesimal!

From NPL website

10⁻¹⁶ way is too small, but

- If you go up 1 km instead of 1 m, then $\Delta f = 1.1 \times 10^{-13} = 0.11 \text{ ps/s}$
- And stay up there 24 hours, then $\Delta T = \Delta f \times 86400 \text{ s} = 9.5 \text{ ns}$
- 9 ns is "huge"; so this looks possible!
- Gravitational time dilation rule-of-thumb 10 ns / day / km

Key parameters

- Location
 - how highhow long
- Clocks
 - how stable
 - how many
- Counters – how precise

Cartoon by Dusan Petricic Scientific American column Wonders by Philip and Phyllis Morrison http://www.sciam.com/1998/0298issue/0298wonders.html

DCC 2013

Bellevue to Mt Rainier

Just 100 miles away (~2½ hours)

• Carrying clock downstairs. Limited time; car is a mess, but it works.

• Clocks in the middle, batteries on the floor, and instrumentation in the front.

• Kids in the back. Dad making final clock BNC connections; Mom says goodbye.

• Detail of TIC's and laptop in front seat and clocks in middle seat. 23:33:48 UTC

• Final gas stop and evening arrival in Rainier National Park.

• Paradise Inn is at 5400' elevation. Large parking lot to hide in.

Classic old Northwest inn; you should visit sometime.

• Wonderful hiking trails and climbing. Lucky to have clear weather.

• Avoid a ticket and move the car again. Ouch, running low in fuel. Now what.

Got gas at 6 AM. Used 15.78 gal in 34 h = 0.46 gph; ~2h/gal, so about 1 ns/gal.

• More hiking, exploring, playing. It's a fun place for a while.

• 42 hours is up; time to leave. We're all tired. Can this really work? Go home.

tvb

• Carry clocks & TIC back inside, reconnect same cables, *resume* phase comparison.

Two questions

- Results <u>unknowable</u> until return
- (1) Did we see any time dilation?
 requires before/after time-rate comparison
 comparison against stable "house" clock
- (2) Did the results match prediction?
 requires record of altitude and duration
 used Garmin GPS NMEA RS232 log

Plots from GPS Log

• Latitude, Longitude

Plots from GPS Log

• Altitude, Velocity

Predictions from GPS Log

- SR (velocity): 50 ps
- Sagnac effect: ±150 ps (net 1 ps)

Predictions from GPS Log

• GR (gravitational): 22.37 ns

Elevation and predicted dilation

Clock time results

 Red 20.3 ns Project GREAT - Single Clock - Red 3 (pre) + 2 (trip) + 9 (post) = 14 days 5.9E-06 40 5.8E-06 30 **Clock Residuals (ns)** 5.7E-06 20 5.6E-06 10 5.5E-06 0 5.4E-06 -10 5.3E-06 53635 53637 53627 53633 53639 53641 53625 53630 53635 53640 53645 53629 53631 53643 Date (MJD) 13-Sep to 29-Sep-2005

tvb

Clock time results (mean)

- Mean
 23.2 ns
- ±4 ns
- Predict
 22.4 ns

3-hat, residuals (home)

Cs_i – Cs_i via lab reference

3 clocks using '3-hat'

103

3-hat, residuals (away)

• Cs_i – Cs_i via mutual-comparisons

3 clocks using '3-hat'

3-hat, residuals (combined)

• $Cs_i - Cs_i$

DCC 2013

Final graph (3+2+3 days)

Final graph (3+2+3 days)

Project GRE²AT – summary

- Theory of relativity confirmed by a family science experiment with cesium clocks
 - time dilation is real, just as Einstein predicted
 - came back tired and 22ns older
- Atomic clocks are tomorrow's altimeters
 - what time is it?
 - what time was it?
 - where time was it?
Thank you!

- John Ackermann
- Steve Bible, Stan Horzepa, DCC
- time-nuts mailing list
- Contact: tvb@LeapSecond.com

