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Abstract 

High period  stabilities  can be expected of a fiber suspended  light  pendulum swinging freely in  vacuum, 
mainly  because of the  extremely high Q factors (> lo5) obtainable in this  almost frictionless mechanical 
oscillator.  In  this  paper,  the  modelization  and  the  projected  stability  limitations of such a system  are 
discussed. Both  the physical arrangements  and  the  electronic  data collection solutions  adopted in 
the  experimental  realization of a prototype  pendulum  apparatus  are  described,  and  sample series of 
period  measurements  are  reported,  analyzed  and discussed.  Mechanical instrumental noise (no  isolation 
against  vibrations was provided)  appears to limit  the Allan deviation of post  modelization  residuals 
with a white  noise of a few ps per  period, which masks all projected  period  measurement  stability 
limitations.  It is argued  that  this observed noise is generated by instability in the  position of the 
period  detector,  and possible solutions to  this problem are  proposed. 

1 Introduction 

Pendulums have been known  for a long time to 
be  good resonators,  suitable for  use  as a refer- 
ence in high quality clocks.  Harrison’s gridiron 
and  Shortt’s master-slave clocks are among the 
most  famous examples of realizations in which in- 
genious solutions were  successfully adopted for 
known period instability causes. In the  latter, 
in particular,  a  pendulum freely  swinging in vac- 
uum was used as a reference for a slave time- 
keeping pendulum which  was phase locked to  it 
[l]. This technique is rather commonly  used in 
modern frequency  technology,  where control of a 
standard’s  output frequency is given in turn, in 
each Fourier frequency region, to  the most  stable 
reference available in the system. In the  Shortt 
clock, the first 50 or so free  swings of the  master 
pendulum  after  a light push were  used to guar- 
antee  the accuracy and as a consequence the long 
term stability of the  system, so that  it wouldn’t 
be  affected by the escapement mechanism, while 
the slave  was responsible for short term, despite 

the  master’s swingdown (in order to push  it with 
the right phase),  and for driving the clock. The 
long term stability achieved by this system was 
reported to be about  apparently limited by 
g variations, as illustrated in section 5. No in- 
formation is available instead  on  its short term 
stability, nor on  what might have  been its long 
term stability  in the absence of g variations. The 
purpose of the work reported  in  this paper is to 
inquire on the stability capabilities of a free pen- 
dulum (swinging in  vacuum) in the short term, 
that is  before g instabilities take place. It is ar- 
gued here that such short term stability can be 
in principle pushed down to for averaging 
times of the order of lo3 S, which  would  allow in- 
teresting applications in  gravitational metrology 
P I .  

2 

In 
to 
to 

Prototype  design 

the  prototype,  the design  choice  was made 
swing a very small  mass ( m  E 1 g), in order 
minimize both  its reaction on the mechani- 
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Figure 1: Schematic  representation of the exper- 
imental  pendulum  prototype. 

cal structure,  and  the friction in  the suspension 
mount.  Both mechanisms in fact can dissipate 
energy and limit the  obtainable Q factor.  On 
the  other  hand,  the residual air friction limited 
Q factor of the pendulum in vacuum is in  fact 
proportional to m itself, according to  the formula 

but  the friction coefficient -y is in  turn propor- 
tional to  the section of the swinging mass and 
therefore, for a given resonant angular frequency 
WO (or pedulum  length L ) ,  this Q limitation de- 
pends more  on  density  than on mass. 

With  the hope of obtaining Q = Qair, a pendu- 
lum was then built  in which the swinging mass is 
a BK7 spherical optical lens (10 mm in  diameter), 
suspended by two converging 0.9 m  long 12 pm di- 
ameter fibres, as  illustrated in Fig.1. With this 
arrangement,  an  air friction limited Q factor in 
excess of 5.10‘ is expected  in an easy  Root pump 
supported Torr vacuum. 

The purpose served  by the double  fibre  is both 
not to interfere  with the laser beam that allows 

BK7 sphere ( 

B 
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Figure 2: Arrangement of the  optical period tim- 
ing. The split detector is in the focus of the spher- 
ical  lens. 

optical  detection of the passage of the spherical 
lens  by the low point of its swing, and to constrain 
its swing on one vertical plane. The  latter prob- 
lem will be discussed in  more  detail  in section 4. 
The principle of the period timing mechanism is 
shown in Fig.2. A laser pointing vertically down 
from the center of the  top  plate of the pendulum’s 
holding structure is  focussed onto a split photodi- 
ode detector by the spherical lens  when the  latter 
is exactly at  the low point of its swing. The gap 
between the two photodiodes is 5 pm wide.  Dif- 
ferential amplification of the split detector signal 
then yields a sharp  marker, which can be used to 
time  the passage of the lens. 

The choice of the fibre material is critical be- 
cause the fibre must be  very  stiff (high Young’s 
modulus E ) ,  and very linear up  to  the break 
point, which must  be  as high as possible. Opera- 
tion of the fibre  close to  its  maximum load is  de- 
sired in order to minimize its section. In  this way 
the energy dissipation at  the suspension, where 
the fibre bends, is  also minimized. Furthermore, 
high density materials should be avoided if pos- 
sible, in order to minimize the weight of the fibre 
and  better approach the ideal simple pendulum 
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model. The question of whether the fibre should 
be  an electrical conductor or an isolator was  also 
raised. In the first  case the worry was that  it 
might drag by cutting magnetic field  lines  while 
swinging. In the second  case the worry  was that 
the spherical lens might get charged electrically 
and  be  then subject to electrostatic forces. It was 
decided that  both worries  were  excessive. 

A 12pm Kevlar fibre  was  chosen,  which is 
rather easy to find. Carbon fibres appeared also 
to be a good choice,  possibly better because of 
the smaller linear temperature expansion coef- 
ficient (2 l.lO-'/K instead of 30.10-6/K), but 
was not readily available. Kevlar has a Young's 
modulus of 58 kN/mm2  and a maximum  load of 
2.8 kN/mm2, so that two 12pm fibres should be 
able to carry up  to 64 g total weight. The 1 g 
weight of the pendulum is expected to stretch  the 
fibres of 7.5.10-4 or 0.75- per m. 

The suspension of the fibres  is  also a critical 
point,  as pinching the fibre might break it, while 
leaving it  too loose  risks both  parting  from  the 
ideal  model  and exciting undesired resonances in 
the pendulum. More on  this is  discussed in  the 
next two sections. 

3 Mat hematical modelieation 

The analysis of the pendulum is quite  straight- 
forward if its effective length Lo and  the grav- 
ity acceleration g are considered constant and 
no  other  disturbanced beyond air friction are in- 
cluded. Note that Lo is not the length of the 
fibres, but  rather their  projection  on the vertical. 
The correct differential equation is then 

6 + - 8 4 - ~ ~ ~ s i n 8 = 0 .  
.. WO * 

Where 8 is the angle  between the fibre and  the 
vertical direction. This  equation can be  solved  ex- 
actly in closed form (at our knowledge} only when 
Q is infinite or when the  amplitude of oscillations 
is  very small. However  if we suppose the energy 
to decrease exponentially with  time  and the de- 
pendance of the period T from the peak angular 
excursion 8, to be the same  as in the case of in- 
finite Q, we obtain  the following approximations 

Q (2) 

for 8, and T 

To = m / 2 n  being here the small oscillation 
period and K ( )  the complete elliptic integral of 
the first kind. These approximations are  rather 
good if Q does not depend on 6, which is probably 
not  exactly  true,  but  not too far from reality. 

It  is well  known that isochronous  oscillations 
can  be  obtained by having the fibre lean on a 
cycloidal  profile on  both sides as  the pendulum 
swings  back and  forth.  The origin of the pendu- 
lum should be in the cuspidal point of a cycloid 
generated by a circle of diameter L0/2 to shorten 
the longer swing periods by just  the right amount. 
Such  cycloidal  profiles are being built and will be 
tested soon. However, it will  be  shown in section 
7 that  the model  just  illustrated is adequate to re- 
duce experimental data  to random noise, at least 
down to  the present measurement resolution, if 
the  apparatus is working  correctly. Incorrect op- 
eration  has occurred when an improper  adjust- 
ment of the pendulum  has induced coupling of 
the  main  mode with other modes. This possibil- 
ity is discussed in the following section 4. 

An additional effect  which  needs to be modeled 
out  in  the  interpretation of experimental data is 
the effect  of the offset of the split detector from 
the low point (0  = 0) of the pendulum.  This ef- 
fect  is introduced by the swing-down  of the pen- 
dulum,  and is not substantially different  whether 
the cycloidal  profiles are used or not.  It is best un- 
derstood with reference to Fig.3, where the dura- 
tion of two  successive intertwined apparent peri- 
ods is compared to  the actual period. Because the 
pendulum swings  down, its velocity constantly 
decreases at each  successive  passage  by the low 
point,  and therefore increases the  time interval 
between the lens'  pass by the low point and  its 
pass by the detector. As a result of this, peri- 
ods measured between  swings that find the low 
point before the detector appear longer than they 
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Figure 3: Effect  of a detector's angular offset A0 
on the measured  period. 

should, and periods measured in  the  other direc- 
tion  appear shorter than they should. The dif- 
ference AT; for  which the apparent  i-th  period 
must be corrected in either  direction is 

It is shown in section 7 that this bias effect is 
quite obvious  even  for small  angular offsets of the 
detector. It is therefore important,  in order to 
model it  out,  to measure periods in  both swing 
directions. 

4 Mode coupling 

In the Table of Fig. 4 a list of the lower modes 
of the pendulum is reported, which  includes an 
estimate of their frequency and  their Q factor. 

An example follows of  how the different modes 
of oscillation can be coupled.  Because the tension 
of the fibre varies during the pendulum oscilla- 
tion,  as an effect of both  the varying centrifugal 
force and  the varying component of the weight 
along the fibre, the  stretch of the fibre  varies too. 
The following system of two  coupled  differential 
equations  in 0 and L must  then be solved. 

s + ( l , - ) e + -  2i7 sin8 = 0 (6) 
m 1i-11  1+11 

Mode 
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Figure 4: Table of the lower pendulum modes 
with an estimate of their characteristics. 

Here 47 represents the  strain of the fibre, 110 = 
m g / E S  is the  static  strain  and WL = d m  
is the longitudinal resonance  frequency. S is the 
section of the fibre. 

In this  particular  instance it  turns out that  the 
resonant frequencies of the two modes are very 
different. In fact, for a 1 m  fibre WL is about 18 Hz 
for a Kevlar 29 fibre ( E  = 58 kN/mm2)  and 26 Hz 
for a Kevlar 49 fibre ( E  = 120 kN/mm2). This de- 
couples the two equations, making a perturbation 
solution acceptable. The  stretch  then follows the 
force, and a simply  calculable pulling effect on 
the pendulum  main frequency  needs  only to be 
considered. A lowering of the Q can also be ex- 
pected from coupling of the  main mode to other 
lower Q modes, but this  has negligible  effects on 
the pendulum st ability if the coupling  coefficients 
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are not too great. 
More devastating can be  the excitation of 

modes that interfere with  the correct detection of 
the  period, by imposing vibrations on the swing- 
ing sperical lens, which  displace in  time  the in- 
stant of detection. Such modes are for example 
the swing of the lens about  its  attachment, if this 
is higher than  the center of the sphere (mode #6) 
and  the  lateral swing (mode #2), due to spherical 
aberrations. A great increase in observed period 
instability was recorded when the fibres  were not 
correctly fixed and  there was a lateral oscillation 
superimposed to  the  main mode. 

5 Instability sources 

Brownian motion of the swinging mass  under 
the  random  bombardment of the residual air 
molecules  gives rise to white noise on  the pen- 
dulum frequency (period).  The level of this is 

and is not  expected to be a problem for the pro- 
totype  pendulum down to  the level of 3 .  for 
1000 S averaging time  in a Torr vacuum. 

More intrinsic and unavoidable causes of insta- 
bility are  those connected with g variations, as 
already  mentioned  in the introduction. Causes of 
the  latter  are for example periodic tides from ce- 
lestial  bodies, like the Moon and  the Sun.  These 
limitations  are  summarized  in Fig.5 in a u,(T) 
plot,  together  with the Brownian motion pre- 
dicted for the  prototype pendulum described in 
this  paper.  The long term  stability  reported  in 
the  literature for the  Shortt pendulum is also in- 
dicated in  the figure, and  the suggestion that  the 
latter might have been limited by g tidal varia- 
tions crops up  naturally by inspecting the  graph. 
With regard to Fig.5, it must be pointed  out  here 
that  the indicated  tidal  limitations for averaging 
times  shorter than one day are  to be taken as an 
average result when many  runs  are  included,  with 
random phases within the  tidal g cycle. Individ- 
ual  runs,  taken  with carefully  chosen phase,  can 
yield stabilities much better  than  that. 

Figure 5: Fundamental  stability  limitations for a 
free  swinging pendulum. 

In addition to these, other  earthbound gen- 
erated instabilities of g, Like non-periodic  seis- 
mic  contributions, metereological and micro- 
environmental g variations may  limit the stability 
of the pendulum at shorter  term. These are  not 
reported  in Fig.5 because no documented data 
from the  literature were at hand at  the  time of 
this  writing l. If g variations at short term were 
found to be an  important  disturbance to high 
resolution gravitational  measurements that one 
might have undertaken  with the pendulum, cor- 
rections could be  tried on the raw data, based 
on continuous g measurements, which should be 
possible with  better  than 10-l' resolution, for ex- 
ample with another  pendulum. 

Variations in  the lenght Lo of the pendulum 
can also  affect the  period, and are not accounted 
for in Fig.5. Temperature coefficient driven LO 
variations are certainly most important,  though 
presumably acting more at medium  and long 
term  than at short  term.  Both  temperature sta- 
bilization and  traditional  length compensation 
techniques may be  necessary to reach the lo-" 

'During  the  conference we  learned that  the  power  spec- 
tral  density of g variations  at  low  Fourier  frequencies is a 
generally  decreasing  function  of  frequency,  with  a  distinc- 
tive mound  peaking at about 1 / 6  Hz at  a  relative level of 
lo-', apparently  due to the slushing of sea  waves on the 
shore 131. 
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stability  mark at 103s.  However, better  than 1 
mK temperature  stabilization  appears feasible  for 
the pendulum  in vacuum, and a factor of 100 com- 
pensation would the place the resulting Lo vari- 
ations in the neighbourhood of for a fibre 
with an expansion coefficient in  the low per 
degree. A carbon fibre  would be suitable for that. 
Kevlar is not. 

The overall  conclusion that can be driven from 
the above  discussion is that there  may be hopes 
to achieve pendulum  stabilities  around only 
for  averaging times  shorter than  about one hour. 
It becomes then  imperative, if one has to reach 
that level, to gain the ability of measuring the 
period with that resolution in a fraction of an 
hour.  This  amounts to resolving the single period 
better  than lo-' (or 20 ns  for a 2 S period) if the 
measurement is dominated by white phase noise 
(slope -3/2 in  the Modsig plot). 

As indicated in  the previous section, mode cou- 
pling can  interfere with the correct detection of 
the vertical crossing of the pendulum.  This effect 
is not easy to model. The best approach seems 
to be to  try  and realize both  the pendulum and 
the lauching system  in such a way as to minimize 
the excitation of other modes. 

The short term observed period stability limi- 
tation, indicated in Fig.5 as a white phase noise 
process,  is projected from the measured noise in 
the period measurement system that was real- 
ized  for the  prototype  pendulum,  and does not 
take  into account the possible disturbances com- 
ing from mode coupling. 

6 Period measurement system 

The period measurement system was conceived in 
such a way as to guarantee  minimal delay from 
the  input waveform to  the  output pulse, and to 
provide  very sharp switching on a very  slow input 
signal. 

The  architecture of the  system is illustrated in 
the block diagram of Fig.6,  and the design of the 
signal conditioning circuitry is outlined  in Fig.7. 
The Cesium standard indicated  in Fig.6 is not 
strictly necessary  as a reference for the period 

deteclor 
split 

conditioning 
signal 

I start 

,top Counter 
SR620 I 
186. PC 

(Data  storage) 

Figure 6: Block diagram of the measurement sys- 
tem. 

split 
-D differential slope detection and 

detector I- v arming 
I I  

enable 
select 

- l . 
Figure 7: Overview of the signal conditioning cir- 
cuitry. 

measurement system  until  stabilities  in excess of 
for an hour are shown to  be possible, but 

even  before that provides the nice capability of 
monitoring the combined  effect of g and LO vari- 
ations. 

Fig.8 shows the signal measured  after the dif- 
ferential  current to voltage converter. The laser 
beam is partially blocked  when the edge of the 
lens  goes  across it.  This creates the secondary 
peaks shown in the figure. The arming circuit 
must  discriminate against this. Moreover, every 
half  swing, the slope of the zero  crossing reverts. 
The purpose of the slope detection circuit is to de- 
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Figure 8: Sketch of the detected differential sig- 
nal. Time not  in scale. 

cide in which direction the pendulum swings. The 
maximum  input slew-rate of the signal is about 
2A/s  (actually 1 A/s),  the measurednoise density 
of the system referred to  the  input is 4.2 p A / G .  
With a bandwith of about  160KHz we should 
have a,(l S) N 2 . lo-’. This is not  the  ultimate 
possibility of the  circuit. 

7 Experimental results 

The raw data of a preliminary experimental run 
taken  in less then  optimum conditions are shown 
in Fig.9. No isolation against  environmental me- 
chanical noise  was provided for the  apparatus 
during  this  typical run, and  initial problems with 
the vacuum system  had  not yet  been addressed. 
In fact,  the residual air pressure was  of about 
5.10-’ Torr. According to  the theory, the pendu- 
lum Q is  inversely proportional to residual pres- 
sure,  and is expected to be  about 2000 at  that 
pressure. The model of (3) and (4) was used to 
fit the corrected data of Fig.10, which was in  turn 
obtained  within the same  fitting procedure by ap- 
plying the correction (5)  to  the raw data of Fig.9. 
The Q value  was adapted for the best fit,  and 
turned  out to be  about 1700. If the friction were 
mostly due to  the residual air still at Torr, 
the Q at  that pressure would be 8-105. 

The Allan deviation of the post-modelization 
residuals for the  data of Fig.10  is  shown in Fig.11. 
The dominant noise process, which limits  the 
measurement resolution, is clearly not the pro- 
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Figure 9: Typical result of a 1000 S period mea- 
surement.  The two  series are  generated by the 
detector’s angular offset. 
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Figure 10: Offset corrected period series. 

jected phase noise  process  which  would be gener- 
ated by the  input noise of the measurement sys- 
tem.  The white frequency (period) noise  shown 
in Fig.11 is instrumental noise generated in a dif- 
ferent way. The problem of understanding  this 
noise and reducing its level  is addressed in  the 
following section 8. 

Nevertheless, the ay(.) plot of Fig.11 shows 
that  the model used to fit the  data is accurate 
at least down to 
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Figure 11: Allan deviation calculated for the cor- 
rected run. 

8 Instrumental noise 

The  interpretation offered here of the observed 
white noise  process is based on the consideration 
that, because of the way the period measurement 
system works,  by timing each passage of the lens 
at  the split detector,  an inherent sampling is in- 
troduced of the environmental mechanical noise. 
This  mechanism is very similar to what consti- 
tutes  an  important noise limitation in  digital fre- 
quency dividers [4], where the  input noise of the 
divider is sampled every time  the  input signal 
crosses a given theshold level. 

In particular, what is relevant in the present ar- 
rangement is the instability of the position of the 
detector  in the direction of the  pendulum swing. 
In fact, while the offset from vertical of the de- 
tection angle can be modeled  out by (5) if it is 
constant, mechanical vibrations of the  system can 
make this offset variable with time,  introducing 
noise in the  instant of detection. Offset variations 
are sampled each half period, i.e. at  the sampling 
frequency of about 1 Hz. 

While  noise components in  the  spectrum of A0 
that are coherent with the sampling frequency 
will not contribute to  the instability of the mea- 
surement (they will just produce a stable offset), 
all  other noise contributions will, with the result 
that this noise  will  affect measurements as a wide 

Figure 12: An illustration of the aliasing mecha- 
nism that is thought to generate,  from A0 noise, 
the white noise  process observed experimentally. 

band contribution, not filtered by the Q of the 
pendulum. 

In Fig.12 an illustration of  how the  spectrum 
of the noise is modified  by the aliasing mecha- 
nism is proposed. All the replicas of the original 
spectrum of AO, each spaced from  the next of an 
amount equal to  the sampling frequency, s u m  up 
to mock white noise  for the sampled version of 
the  spectrum, irrespective of the original profile. 

It must be underlined here that  the  data runs 
referred to in  this  paper were taken  with  the phys- 
ical apparatus lying on the floor, at  the second 
floor of a  three  story building, and  that  the ob- 
served 3 PS rms resolution on  the single period 
indicates an rms  instability of only 1 pm for the 
position of the detector  in that  time  frame, since 
the velocity of the  pendulum is 0.3 m/s. This is 
quite amazing, given the  operating conditions. 

Vibration isolation is obviously  necessary in 
this experiment, and any level of isolation is ex- 
pected to improve the stability of results. How- 
ever, in order to avoid the aliasing problem, the 
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variations of A0 should in principle be low pass [S] T .  M. J. Niebauer, G.  S. Sasagawa, J. E. Faller, R. 
filtered well  below the sampling frequency to  sat- Hilt, F. Klopping, “A new  generation  of  absolute 
isfy the Nyquist criterion. This is rather difficult gravimeters“,  Metrologia,  v.32,  pp.159-180,  1995. 
to implement because the sampling frequency  is [G] R. L. Rinker, J. E. Faller, “Super  Spring - A Long 
very  low (1 Hz for a 1 m  pendulum). Similar Period  Vibration  Isolator”, Precision  Measure- 
problems are often encountered in  gravitational ment and  Fundamental  Constants 11, NBS Special 
metrology [ 5 ] ,  and ingenious solutions have been 
proposed [6 ] .  

Publication  617,  1984. 

9 Conclusions 

The  pendulum was built and  it’s working. It 
needs some care during  the launching phase in or- 
der to avoid exciting modes other  than  the  main 
one. The  period model works at  a level of 
we cannot say at present which  level  of modeling 
accuracy is reachable. Probably  further measure- 
ments  with a better  vibration isolated system will 
give  us more  information. Actually the bottle- 
neck  of the  system is represented by the aliasing 
of the noise on the  detection angle, but we are 
studying various kinds of solutions to this prob- 
lem. One approach is to isolate  from  vibration  as 
much as we can down to  the  tenth of a Hertz re- 
gion  by the use of supersprings, as outlined in [6] .  
Another  approach is to measure the  tilt angle of 
the  system  from  the local vertical and  to model 
out. 
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