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Introduction 

This is the first of several articles where I explore high-accuracy pendulum simulation. 

Even now in the 21st century, a number of mysteries still exist regarding precision pendulum 
clocks. How do tides affect impulse? Is high-vacuum always better? How much do seismic 
effects contribute to clock instability? Is higher Q always better? How much do suspension 
losses contribute to timekeeping error? Is small amplitude always better than large amplitude? 
Does amplitude control compensate for rod creep? Do gravity changes conflict with amplitude 
control? Why does a stopped pendulum spontaneously start and how much does this spoil normal 
timekeeping? Would a pendulum keep better time on Mars than on Earth? 

We each come to the field of precision pendulum timekeeping from different backgrounds and 
acquired skills. The distinct methods that we use to understand the subtle behavior of precision 
pendulum clocks include: 

 Historical – Some of you are extremely well-read in horology and can solve pendulum 
problems or make insightful recommendations based on a deep knowledge of the past 
alone. There are centuries of books and articles and thousands of historical pendulum 
clock examples to learn from. 

 Analytical – It is no accident that pendulums are part of every mathematics and physics 
curriculum. The equations are simple when simple assumptions are made; the equations 
get far more complex and interesting when real-world pendulum behavior is considered. I 
am always amazed by people who can think in equations and solve problems with only a 
chalk board. 

 Empirical – The most attention goes to those who design and actually build pendulum 
clocks. Not just read about them, not just write equations; but get their hands dirty to 
bring their magnificent creations to life. Most of what we know about pendulum clocks is 
the result of incremental evolution. Pendulum analysis is done by physical measurements 
(e.g., using a Microset timer). While some read words, and others write equations, a few 
of you do real work! 

 Numerical – Computers are now fast enough to model the behavior of a pendulum clock 
with digital simulation. The predicted behavior of a rod and bob in a gravitational field is 
simulated by breaking the problem into tiny segments, each representing just 
milliseconds or microseconds of time. The true smooth operation of a pendulum is 
approximated by a sequence of thousands or millions of ragged quantized steps. 

Having limited skills with historical, analytical, and empirical methods I decided to see what the 
numerical method could offer. As a computer engineer, the hammers I bring to every problem 
tend to be computers, microprocessors, and software. 



I figured there is no harm in seeing if numerical methods could shed light on certain pendulum 
behaviors. Initially I was distrustful that computer simulation of a pendulum clock could have 
any bearing on real world pendulum clocks. But the initial results have turned out well. For my 
own sake, if not yours, this article has no physics diagrams, equations, calculus, or Greek 
symbols. I want to describe as simply as possible the world of simulation. 

Numerical simulation 

The idea behind numerical simulation is incredibly simple. It is the assumption that you can 
break complex physical motion into tiny pieces. The bob of an idealized pendulum moves in a 
smooth path. In numerical simulation an imaginary bob jerks from one calculated point to 
another calculated point in short straight lines. Think staircase instead of smooth ramp. Worse 
yet, the points themselves are not precise numbers due to computer architecture limitations. How 
can this be good? 

Computer simulation gets a poor reception in horological circles for two simple reasons: it's not 
real and it's not correct. It is like trying to recreate Venus de Milo out of Lego bricks: from a 
distance it might have the right curvy shape but up close it's a poor, ragged, embarrassing digital 
imitation. An analogy can be found in music (compare LP with CD or MP3), or photos (compare 
paintings with digital images), or video (compare live theater with DVD movies). Real is always 
better than digital, but over the decades the resolution of digital has improved so much that it is 
getting harder to tell the difference. The retina display is good example. 

The key to understanding numerical simulation is not to worry about right and wrong, but instead 
to consider how close to right the wrong might be. Not every analysis of pendulum behavior 
needs to be done perfectly. Sometimes close enough is sufficient and so these digital, quantized 
approximations of motion may have some merit. 

The word simulation has two meanings. You can model the parabolic path of a bouncing ball to 
create an animation. We see this in movies, web animations, video games, and textbooks – where 
a known formula or equation of motion is employed to predict where an object will be at any 
point in time. This is not the type of simulation we're interested in. Instead, the simulation being 
used here is numerical simulation. In this case we do not model the motion of the ball at all, but 
instead merely model the forces that a ball would experience. Any movement of the ball is a side 
effect of the simulated forces. This distinction is important. 

Numerical simulation of a pendulum is very easy because there is only one force involved 
(gravity). Given a pendulum of constant length L and constant acceleration of gravity g, just two 
parameters describe the bob at any given moment in time: its current angle, or amplitude theta 
and its current rate of motion, or velocity omega. 

By convention, theta is positive when right of center and negative when left of center. Similarly 
omega is positive when the bob is moving left to right and negative for right to left. The units for 
theta are radians, but often converted to degrees for us humans. The units for omega are radians 
per second, often converted to meters/second. 

If we know the current speed and position of the bob, it is easy to predict (guess, estimate) the 
speed and position of the bob, say, a millisecond later with linear extrapolation. The only physics 



required is "rate × time = distance", which we all learned as children. The computer code I'm 
using for the simulation is just this: 

     repeat { 
        omega -= dt * sin(theta) * g / L; // update speed 
        theta += dt * omega;    // update angle 
     } 

That's all there is to it. The constant dt is the time step size (usually a small fraction of a second). 
At each step, the speed of the bob is adjusted based on the force of gravity at the current angle, 
and angle is adjusted based on the current speed. This process repeats: speed causes a change in 
angle, angle causes a change in speed, speed causes a change in angle, angle causes a change in 
speed, etc. 

We know a pendulum exhibits oscillatory motion but it is important to realize that the computer 
program has no idea what oscillatory motion is, what a sine wave is, what period is, or what 
circular error is. All the program is doing is applying simple rules of force and motion at each 
step. If oscillatory motion results from this, that's great (and expected). But the macroscopic 
behavior of the pendulum is not in any way programmed into the software. Otherwise we would 
be creating a pendulum animation instead of creating a pendulum simulation. 

The code above implements the Euler-Cromer method. The basic Euler method of integration 
dates back to 1768 (nearly 250 years ago). As you might imagine, repeating imperfect 
calculations like this hundreds or thousands of times will certainly introduce computational 
errors. In 1980 Alan Cromer [1] explored subtle modifications of the Euler method and found 
one that was relatively immune from rounding losses! That is the version used here. 

The curious reader will now search for words like: ODE, Euler integration, Euler-Cromer, 
Runge-Kutta, Newton–Stormer–Verlet, Computational Physics, simple pendulum, and leapfrog. 

Virtual pendulum clock 

Pendulum simulation software has been around as long as computers. Philip Woodward [2] 
wrote his own simulation programs. Bob Holmstrom [3] has experimented with commercial 
simulation tools. I would not doubt many others have use simulation tools as well. 

My intent was not to develop a fancy, interactive, graphical, swinging pendulum program; the 
web is full of these. They are excellent for education but usually not good for precision 
pendulum research. Instead my goals were 1) to create a virtual pendulum and output raw 
numbers so that the data could be analyzed using the same tools and techniques that I use with 
raw data from real pendulum clocks, and 2) to achieve the highest possible performance and 
accuracy, and 3) to allow simulations as short as one swing, or as long as a day or a month in the 
life of a virtual pendulum clock, and 4) to allow the program to be changed to support different 
pendulum experiments. 

The program(s) are written in C and are available on my web site [4]. They are as user friendly 
as any UNIX command line tool (humor). Even my 7 year old Windows XP laptop runs over 5 
million steps/second. This is much faster than other pendulum simulation programs and allows 
me to get answers far quicker, or far more accurate, or both. 



In its simplest form the program allows you to specify constants like rod length (L), the local 
acceleration of gravity (g), the mass of the bob (m), the initial amplitude (a), and the step size 
(dt). The initial value of theta is –a (pendulum pulled to the left) and the initial value of omega is 
0 (pendulum is motionless). At this point the Euler-Cromer simulation loop begins, step after 
step after step. 

At each step, the program can display the value of theta and omega. In addition, the program can 
report useful values such as amplitude (degrees), horizontal displacement (meters), vertical 
height (meters), velocity (m/s), kinetic energy (J), potential energy (J), and total energy (J). The 
virtual time (which is the step number times dt) is also displayed. 

So now if I want to perform an experiment I have a choice of going to the basement and doing it 
with a real pendulum clock (Synchronome) or staying at my desk and doing it with a virtual 
pendulum clock. I realize that many experiments cannot be done with a virtual clock. At the 
same time, some experiments that might be extremely difficult or impossible to perform with a 
Synchronome, might be easy with a virtual clock. It is not a universal solution; just another tool. 

First results 

Let's see what happens if we simulate a 2-seconds pendulum having L=0.99362 m, g=9.807, 
m=10kg, and a=1 degree. We choose a simulation step size of 0.1 second and 20 steps are 
shown. The output shows step number, virtual elapsed time, bob angle (degrees), height (meters), 
velocity (meters/second), and total energy (Joules): 

      step    seconds      angle     height   velocity     energy 
         0   0.000000  -1.000000   0.000151   0.000000   0.014841 
         1   0.100000  -0.901305   0.000123   0.017116   0.013521 
         2   0.200000  -0.713656   0.000077   0.032542   0.012854 
         3   0.300000  -0.455570   0.000031   0.044757   0.013096 
         4   0.400000  -0.152521   0.000004   0.052555   0.014155 
         5   0.500000   0.165583   0.000004   0.055165   0.015623 
         6   0.600000   0.467343   0.000033   0.052331   0.016934 
         7   0.700000   0.722977   0.000079   0.044332   0.017584 
         8   0.800000   0.907256   0.000125   0.031957   0.017322 
         9   0.900000   1.001992   0.000152   0.016429   0.016250 
        10   1.000000   0.997837   0.000151  -0.000721   0.014780 
        11   1.100000   0.895201   0.000121  -0.017799   0.013478 
        12   1.200000   0.704212   0.000075  -0.033121   0.012845 
        13   1.300000   0.443720   0.000030  -0.045174   0.013126 
        14   1.400000   0.139433   0.000003  -0.052769   0.014212 
        15   1.500000  -0.178616   0.000005  -0.055156   0.015684 
        16   1.600000  -0.479036   0.000035  -0.052099   0.016977 
        17   1.700000  -0.732175   0.000081  -0.043899   0.017592 
        18   1.800000  -0.913051   0.000126  -0.031367   0.017292 
        19   1.900000  -1.003813   0.000152  -0.015740   0.016193 
        20   2.000000  -0.995504   0.000150   0.001441   0.014718 

We can immediately make the following observations: 

 The virtual pendulum is swinging! See how it starts at –1 degree, swings right through 0, 
hits +1 degree, and heads back left through 0, and ends up near –1 degree. Plotting the 
data would give a cosine curve. 

 The velocity starts small, increases to about +55 cm/s near center, and then decreases to 
near zero at the end of the swing. It then increases to about –55 cm/s near the center as it 



goes left and ends up near zero at the end of the period. Plotting the data would give a 
sine curve. 

 The total energy (PE + KE) is roughly 15 mJ, but clearly is not constant. 

 The period is about 2 seconds, as expected for this pendulum. 

The bad news is that while the amplitude starts at exactly –1 degree and doesn't end at exactly +1 
degree. Worse yet, total energy is not very constant. Errors in precision like this are one example 
why simulation is often not treated seriously. However, these poor results are to be expected with 
a step size of only 0.1 second. If instead we reduce the step size to 0.0001 second (0.1 
millisecond), the program computes 20,000 points. Below only every 1000th step is shown: 

      step    seconds      angle     height   velocity     energy 
         0   0.000000  -1.000000   0.000151   0.000000   0.014841 
      1000   0.100000  -0.951009   0.000137   0.016835   0.014840 
      2000   0.200000  -0.808927   0.000099   0.032023   0.014839 
      3000   0.300000  -0.587661   0.000052   0.044076   0.014839 
      4000   0.400000  -0.308870   0.000014   0.051815   0.014840 
      5000   0.500000   0.000156   0.000000   0.054482   0.014841 
      6000   0.600000   0.309167   0.000014   0.051815   0.014843 
      7000   0.700000   0.587914   0.000052   0.044076   0.014843 
      8000   0.800000   0.809110   0.000099   0.032023   0.014843 
      9000   0.900000   0.951105   0.000137   0.016836   0.014843 
     10000   1.000000   1.000000   0.000151   0.000000   0.014841 
     11000   1.100000   0.951009   0.000137  -0.016835   0.014840 
     12000   1.200000   0.808928   0.000099  -0.032023   0.014839 
     13000   1.300000   0.587662   0.000052  -0.044076   0.014839 
     14000   1.400000   0.308871   0.000014  -0.051815   0.014840 
     15000   1.500000  -0.000155   0.000000  -0.054482   0.014841 
     16000   1.600000  -0.309166   0.000014  -0.051815   0.014843 
     17000   1.700000  -0.587913   0.000052  -0.044076   0.014843 
     18000   1.800000  -0.809109   0.000099  -0.032023   0.014843 
     19000   1.900000  -0.951105   0.000137  -0.016836   0.014843 
     20000   2.000000  -1.000000   0.000151  -0.000000   0.014841 

Now we see wonderful results. The angle starts at –1 degree, goes to +1 degree, and then back to 
–1 degree, exactly. The sum of PE and KE at every step is now 14.844 mJ, consistent to 5 or 6 
decimal places. So as long as we use a small enough step size the virtual pendulum starts acting 
like a real pendulum. 

Accuracy and patience 

Fortunately, using a smaller step size is no problem at all. The program is so efficient it can 
compute a million steps in a fraction of a second; a billion steps take only a few minutes. Thus 
the tool can be used to perform incredibly precise or extremely long simulations. 

So is simulation valid? Is approximation tolerable? Even with a real pendulum there are implicit 
errors in measurement. Nothing is perfect. After you play with a virtual pendulum you realize it 
can be more accurate than a real pendulum in many cases. 

As an example, if I wanted to investigate the effect of tides I could spend years trying to make a 
world-class pendulum that would be so accurate (about 8 decimal places) that it would detect the 
variations in gravity due to the motions of the moon-earth-sun system. Or I could pick a small 
enough step size so my virtual pendulum clock was accurate to 8 decimal places and then just 
vary gravity in software. You can see where I'm heading. 



The choice of accuracy is dictated by what experiment you're trying to do. This is true for both 
real and virtual pendulum clocks. The difference is that greater accuracy is easy to achieve in 
software pendulums and much harder to achieve with hardware pendulums. In most cases one 
simply trades patience for accuracy. For extreme accuracy the computer can be left to run for 
many hours instead of a few minutes or seconds. 

Virtual pendulum measurement 

With a real pendulum we usually make measurements of beat or period, of peak amplitude or 
peak velocity. The measurements can be made as often as once a second although usually they 
are averaged and reported as less frequent intervals for convenience. 

Virtual pendulum software can report the position of the virtual bob each step. But that is usually 
far too much data. Instead it is desirable to extract only the peak amplitude, peak velocity, and 
period of a virtual pendulum. How can this be done? At every step we know theta and omega. 
Peak amplitude occurs at the end of the swing. With simple comparison, a computer program can 
determine which point is the peak and report it. 

Another technique is even easier. The center point of the swing occurs when theta changes sign. 
Similarly, the end points of the swing occur when omega changes sign. After each step, a check 
for sign change in omega or theta is made to determine if the virtual pendulum is at one of these 
measurement points. These measurements, as well as the step count, can be made more precise 
with linear interpolation over the zero-crossings. 

It is as if the virtual pendulum has a built-in virtual Microset timer that automatically reports 
period, peak amplitude and velocity every swing. In this way raw data from a virtual pendulum 
looks the same as raw data from a real pendulum; they can both be processed by the same 
graphing, analysis, and statistical tools. 

Period and circular error 

As an example of the built-in measurement capability, let's measure the period of a virtual 
pendulum (L=1 m, g=9.8 m/s², a=1). The expected answer is 2.007128135980991 seconds. 

step size = 1e-2 s, measured period = 2.00704 (error = 4.1e-5) 
step size = 1e-4 s, measured period = 2.007128127 (error = 4.1e-9) 
step size = 1e-6 s, measured period = 2.00712813598018 (error = 4e-13) 

You can see that amazing accuracy is possible with even modest step sizes. 12 digit accuracy 
was obtained with 2 million steps in less than half a second. 

Remember that the Euler-Cromer method knows absolutely nothing about period or circular 
error; it is simply following basic rules of straight line motion in small steps. So does a virtual 
pendulum exhibit circular error like a real pendulum does? To test this we can try different initial 
amplitudes and see how the period compares with the expected known value. 

Here is the result for amplitude 1' (one minute of angle): 
    2.007089933768982 – using pendulum period formula 
    2.007089933768938 – measured with virtual pendulum 



Here is the result for amplitude 1° (one degree of angle): 
    2.007128135980991 – using pendulum period formula 
    2.007128135980985 – measured with virtual pendulum 

Here is the result for amplitude 15°: 
    2.015721572277283 – using pendulum period formula 
    2.015721572277266 – measured with virtual pendulum 

The accuracy is 13 or 14 digits; a virtual pendulum exhibits circular error as it should. 

At extremely large angles, high precision is harder to obtain. Here is amplitude 179°: 
    7.829788572986007 – using pendulum period formula 
    7.829788573177146 – measured with virtual pendulum 

In this case the accuracy is "only" about 11 digits after a few minutes of computation. No one 
builds a real pendulum clock with 179° amplitude but this works fine with simulation. So far, the 
virtual pendulum has matched the predictions of the AGM-pendulum formula for every possible 
combination of L or g or angle I can think of. 

Limits to accuracy 

We have seen that simulation accuracy depends on step size. This does not mean, however, that 
one can achieve infinitely good accuracy by using ever smaller and smaller steps. There has to be 
a limit. We know this because of the way native computer arithmetic works. In this case I'm 
using double precision, floating-point math, which has 53-bits of binary precision (about 15.9 
decimal digits). A simple experiment was performed in order to verify that these limitations 
exist, and to measure them. 

An ideal precision pendulum with L=1m, g=9.8m/s², a=1° should have period of 
2.007128135980991 seconds. The pendulum simulator was run 30 times, with a different step 
size each time. The step size ranged from as large and unrealistically coarse as 2-1 (½ second) to 
as small and impractically fine as 2-30 (about 1 nanosecond). The graph shows how the virtual 
period compares to the pendulum period equation for all 30 runs: 
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The results are wonderful. First, it clearly shows that accuracy improves as step size decreases. 
Second, it shows that accuracy improves at double the rate of step size: a 1 millisecond step size 
gives period with 6 digits of accuracy, and a 1 microsecond step size gives period with 12 digits 
of accuracy. Finally, the graph shows there is a 13 or 14 digit limit of accuracy, regardless of 
step size. All this is expected, which gives further confidence to this numerical method. 

A precision "floor" of 14 digits poses no problem for my intended use of the program. Note this 
is far more precise than any real pendulum or electronic pendulum measurement system. 

Conclusion 

So it is possible to create a virtual precision pendulum clock through numerical simulation. The 
virtual pendulum matches standard analytical formulas and empirical experiments to a high 
degree. This idealized (constant gravity, friction-less, etc.) virtual pendulum: 

•  swings back and forth, as expected 
•  has period which matches the pendulum formula 
•  maintains constant amplitude, as expected 
•  exhibits circular error, exactly as predicted 
•  conserves total energy, as expected 
•  works for any angle of amplitude, small or large 
•  becomes more accurate as step size decreases 
•  works with step sizes as low as 100 nanoseconds 
•  produces answers up to 14 digits of accuracy 
•  can simulate just one swing or many days or months 

I am pleased with the results. I did not realize numerical simulation was so easy or could be 
made so accurate and efficient. Having gained confidence in this method, the plan is to apply this 
to some of the pendulum mysteries I am interested in. I realize that some of these questions could 
be answered with advanced mathematics or by experimenting with real pendulum clocks, but I 
think the virtual pendulum clock is not without promise. 

Simulation has many limitations. I don’t think it can be used to compare spring or knife-edge 
suspension, or figure out the best bob shape, etc. Instead I plan to use the tool only for the class 
of problems where it might help; problems that involve forces, geometry, energy, and noise. 
These will be described in subsequent articles [5] in this series. 

Notes: 

[1] http://en.wikipedia.org/wiki/Euler-Cromer_algorithm 

[2] Philip Woodward, Experiments with a simulated clock, Horological Journal, January 1991, 
pages 240-242 

[3] Bob Holmstrom, Useful Tool for Horological Modeling, HSN 1999-1, pages 18-21 

[4] www.leapsecond.com/tools/pend8.exe (pend8.c) is a simple simulator 

[5] Copies of my HSN pendulum papers: http://leapsecond.com/hsn2006/ 
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