Extreme Amateur Timekeeping: from Harrison to Einstein

Tom Van Baak
NAWCC Ward Francillon Time Symposium
TIME for Everyone
Pasadena, November 2013

Outline

- Part 1 - amateur timekeeping
- Part 2 - precision pendulum clocks
- Part 3 - powers of ten
- Part 4 - kids, clocks, and relativity

1. amateur timekeeping

- An innocent beginning, 20 years ago
- LED clock project, quartz timebase
- how accurate is it?
- how to measure it?
- Use frequency counter
- how accurate is it?
- how to measure it?

Accuracy

- 0.01/10.00 MHz = 0.1% (86 sec/day)
- 0.0001/10 = 10 ppm ($0.8 \mathrm{sec} /$ day)

More accuracy

- Better timekeeping needs better timebase
- Better measurement requires better counter and/or better reference
- What does it mean to "keep" time?
- who's time are we actually keeping?
- what is WWVB, GOES, Loran-C, GPS time?
- what is UTC; how good are atomic clocks?
- This time stuff is all so interesting

The quest for better oscillators

The quest for more digits

FLபKK PM6680B high resolution programmable timer/counter
7.979797979^{5} FREQ A

$10(0) 00$

Slippery slope

- More oscillators, more test equipment
- Oscillator measurement and comparison - quartz, rubidium, cesium standards
- Improve counter speed and resolution
- microseconds, nanoseconds, picoseconds
- Books, articles, op/svc manuals, HPJ
- bad case of precise time \& frequency curiosity
- Help! I've got the "time bug"

Home time \& frequency lab

Museum of hp clocks

HP quartz

- 105B
 - 107BR
 - 106B
 - 104AR
 - 103AR
 - 101A
 - 100ER

tvb

HP clocks

- HP01
- 571B
- 5321
- 117A
- 114BR
- 115BR
- 113AR

HP cesium \& rubidium

- 5071A
- 5065A
- 5062c
- 5061B
- 5061A
- 5060A

Vintage hp 5061A (eBay)

FYI: cesium (caesium)

- Cesium atomic clocks are not radioactive
- They use a natural, stable Cs^{133} atom, not the scary man-made radioisotope Cs ${ }^{137}$
- Analogy: C^{12} vs. C^{14}
- K^{39} vs. K^{40} (banana)
- "hyperfine transition" 9,192,631,770 Hz
- Solid / liquid metal

What is the best clock?

- Quartz: inaccurate and drifts
- Rubidium vapor: more stable but still drifts
- Cesium beam: better still and no drift
- Hydrogen maser: most stable, small drift
- UTC itself is "average" of 345 clocks
- Exotic fountain, ion, optical clocks
- No one best clock, no perfect time

"Keeps perfect time"

Which watch is best?

- You go shopping for watches at lunch...

Which clock do you want?

- Checking each day, at precisely noon:
- (a)
(b)
(c)
(d)
- 12:00:00 12:01:30 12:03:30 12:06:11
- 12:00:00 12:01:40 12:03:25 12:07:22
- 12:00:00 12:01:20 12:03:30 12:08:33
- 12:00:00 12:01:10 12:03:35 12:09:44
- 12:00:00 12:01:40 12:03:30 12:10:55
- Which one do you want to buy?

Which clock do you want?

- Answer:
- (a) is probably a stopped watch
- (b) is most accurate, but more variable
- (c) is less accurate, but less variable
- (d) is least accurate, but very stable
- Watch (d) is exactly $1: 11$ fast per 24 h
- regulate (or simply apply a math correction) and then you have the best watch

Best wristwatch

2. precision pendulum clocks

- My timekeeping world expanded in 1995
- Bill Scolnik (pendulum and atomic clocks)
- Dava Sobel (Longitude)
- New appreciation of historical timekeeping
- NAWCC, HSN(161), books, articles, people
- Amazing world of horology, and again:
- how accurate is it?
- how to measure it?

Precise pendulum clocks

- Classic examples:
- Riefler, Shortt, Fedchenko, and more
- Modern amateur examples:
- Philip Woodward (W5)
- Douglas Bateman
- Bill Scolnik (Q1, Q2, Q3)
- Teddy Hall (Littlemore)
- Bryan Mumford, and more
- No amateur has out-performed a Shortt

Pendulum clock, tides

- The issue with lunar-solar "earth" tides:
- period $T \approx 2 \pi \sqrt{ }(\mathrm{~L} / \mathrm{g})$
- g (980 gal) varies by about $\pm 100 \mu \mathrm{gal}$
- in theory, this affects rate and timekeeping
- Earth-moon-sun system is complex
- timekeeping error does not average to zero
- this limits [best] pendulum performance
- Let's study 4 examples

Shortt-Synchronome

Fedchenko AChF-3

NAWCC 2013

Littlemore clock

Pendulum [in]stability

- Performance comparison:
- 1. Shortt \#41 (data from Pierre Boucheron)
- 2. Fedchenko \#8 (partial data)
- 3. Littlemore (data from Teddy Hall)
- 4. "Perfect" (computer model of gravity)
- Allan deviation statistics
- short-term perturbations
- long-term drift (environment, amplitude)

Allan deviation

- Mean, standard deviation, regression, ...
- Clock performance can be more complex:
$-2^{\text {nd }}$ difference method is useful
- notion of sampling interval is useful
- Allan deviation incorporates both - a measure of frequency instability (sigma)
- as a function of sampling times (tau)
- Comparison of similar and different clocks

Pendulum instability(1)

Pendulum instability(2)

Fedchenko / Shortt

Pendulum instability(3)

Pendulum instability(4)

Pendulum insights

- There is still room for improvement!
- Shortt, Fedchenko hit short-term limit
- Shortt is 100x from perfect, long-term
- Littlemore, even using quartz, is still 10x
- Someday, someone will better this
- will it be you?
- with free pendulum or hybrid quartz?
- Best pendulum clock is a good gravimeter

Fedchenko (gravimeter) 11/69

3. powers of ten

- Not all clocks are super accurate
- Any periodic event is can be a clock
- How regular the occurrence determines:
- how good or bad the clock is
- How continuous the events determines:
- how reliable the clock is
- The range of accuracy/stability is huge!
- all you have to do is measure it

"Powers of Ten" - inspiration

- Mr Charles and Mrs Ray Eames (1977)
- "the effect of adding another zero"

Powers of Ten ${ }^{\text {TM }}$ (1977)
EamesOffice Subscribe

10^{-0} drip, drip

- Leak in ceiling
- 0.57 s ... 9.9 s
- 1.7 Hz ... 0.1 Hz

10^{-1}
 heart beat

- $10^{-1}, 0.1,10 \%$
- The original ' 1 PPS'
- Sometimes $2 x$, even $3 x$
- Much higher stability at night
- < 10\% accuracy possible

10^{-1} heart beat

- 12 h frequency plot (evening/night)
- ADEV floor is 10^{-1} from 10^{1} to $10^{4} \mathrm{~s}$!

10^{-2} tuning fork oscillator

- 0.01, 1\%
- General Radio Type 213 Audio Oscillator
- 1 'kc'; f = ~992.8 Hz
- $\pm 1.3 \mathrm{mHz}(60 \times 1 \mathrm{~s})$
- Accuracy < 1\%
- Count those 9's
- ADEV is $10^{-6} \ldots 10^{-4}$

10^{-2} tuning fork oscillator

10^{-3}
 precision tuning fork

- 0.001, 0.1\%, 1 ms/s
- General Radio Type 813 single vacuum tube
- 1 'kc' tuning fork
- f = ~999.4 Hz
- $\pm 400 \mu \mathrm{~Hz}$ ($60 \times 1 \mathrm{~s}$)
- Accuracy < 0.1\%
- ADEV is $10^{-7} \ldots 10^{-4}$

10^{-3}
 precision tuning fork

10^{-4}
 mechanical oscillator

- 0.01\%, 100 ppm
- Mechanical oscillator transistorized
- "Four 9's"

999.907,211,67	Hz	
999.907, 250,33	Hz	
999.907,273,16	Hz	
999.907,311,01	Hz	
999.907,250,27	Hz	
999.907,345,09	Hz	
N : 60		
STD DEV: 151.81	2 uHz	
MEAN : 999.90	7,159,334	Hz
max : 999.907	7,404,05	Hz
MIN : 999.90	6,840,54	Hz
999.907, 392, 20	Hz	
999.907,415,25	Hz	
999.907, 354,85	Hz	

10^{-5}
 mains (line frequency)

- 0.001\%, 10 ppm
- $60 \pm \mathrm{Hz}$

00.005,640,120,5	Tiz
60.009,491,393,8	Hz
60.000,431,181,6	Hz
59.992,198,219,9	Hz
59.987,371,509,5	Hz
59.993,148,200,6	Hz
59.999, 032,462,5	Hz
59.985,892,634,1	Hz
59.995, 727,396,2	Hz
N : 36	
STD DEU: 0.006,76	5,596, 40 Hz
MEAN : 59.999,5	54,563,23 Hz
MAX : 60.010,3	90,980,5 Hz
MIN : 59.985,8	92,634,1 Hz
59.996, 011,518,6	Hz

60 Hz Mains Frequency Deviation Histogram 2.7 million one second samples (~ 1 month)

10^{-5}
 mains (line frequency)

10^{-6}
 quartz watch (RC)

- 0.0001\%, 1 ppm, $1 \mu \mathrm{~s} / \mathrm{s}$
- $+160 \mathrm{~ms} / \mathrm{d}=+1.85 \mathrm{ppm}$

10^{-6}
 quartz watch (RC)

- Nightly WWVB radio sync (60 kHz)
- Look closely at 01:30 AM PST
- +1h +30m +15s
- Plot of 9 days
- Rate variations
- Sync variations

10^{-7} chronometer

- 0.1 ppm
- Rated $1 / 4 \mathrm{sec} /$ day deviation

10^{-7} chronometer

- ~55 hour runtime
- 200 ms phase residuals
- ADEV 6×10^{-7}

10^{-7} chronometer

- From 1940's USN manual...
- Phase
- Dial error
- Frequency
- Daily rate
- Drift
- Deviation in rate

COMPUTATION OF RATE					
Date	$\begin{gathered} \text { Dial Error } \\ +=\text { Fast } \\ -=\text { Slow } \end{gathered}$		Daily Rate $\begin{aligned} & +=\text { Gain } \\ & -=\text { Loss } \end{aligned}$	Mean Deviation in Daily Rate	Remarks
	Min	Sec			
Of 718					
3	+0	2			Stant $\mathrm{l}_{\text {cest }}$
4	+0	$2 \dot{1}$	$+1 / 2$		
5	+0	$2 \frac{1}{2}$	0	$\frac{1}{4}$	
6	+0	3	$+1 / 2$	$1 / 4$	
7	+0	3	0	$1 / 4$	
8	+0	312	+ $1 / 2$	1/4	
9	-	-	-	4	ntwound
10	+0	4	+ $1 / 4$	-	2day ang
(Mean daily rate $=+1 / 4$ second)					
In Table I, there will be noted a column headed "Mean Deviation in Daily Rate." The					

10^{-8}
 pendulum clock

- 0.01 ppm, 10 ppb $10 \mathrm{~ns} / \mathrm{s}, 864 \mu \mathrm{~s} / \mathrm{d}$
- Shortt,

Fedchenko,
Riefler,
'Littlemore’

10^{-8}
 pendulum clock

10^{-9} earth

- 0.001 ppm
- Slow by ~2 ms per day
- Also somewhat irregular
- ADEV $10^{-8} \sim 10^{-9}$
- Limited by core, weather, climate
- Lunar/solar tides, periodic variations
- Tidal friction, long-term drift

10^{-9}
 earth (40y of data)

10^{-9}
 earth clock

- Long-term plot (300 years)
- Length of day (LOD) is 86,400 seconds \pm a few milliseconds

10^{-9}
 earth clock

- Short-term plot (3 recent years)
- LOD is about $86,400.002$ seconds

10-9
 earth clock

Filtering of the Length of Day: trend, seasonnal variation and residuals

10^{-9}

earth frequency standard

- Suggested improvements:
- Thoroughly clean, and dry with cloth
- Remove surrounding gas and water vapor
- Wait for core to cool before use
- Re-align axis of rotation (wobbling)
- Keep away from nearby moon (tides)
- Keep away from sun (tempco)
- Re-adjust rate (avoid leap seconds)

10^{-10}
 OCXO

- $0.1 \mathrm{ppb}, 100 \mathrm{ps} / \mathrm{s}, 8.64 \mu \mathrm{~s} / \mathrm{d}$
- $10^{-10} \ldots 0^{-13}$ short
- $5 \times 10^{-10} / \mathrm{d}$ drift

10^{-11} good ocxo

- $0.01 \mathrm{ppb}, 10 \mathrm{ps} / \mathrm{s}, 864 \mathrm{~ns} / \mathrm{d}(\sim 1 \mu \mathrm{~s} / \mathrm{d})$
- $10^{-11} \ldots 0^{-13}$ short
- $\sim 10^{-11} / \mathrm{d}$ drift

29 Sep 2008 07:01:18

10^{-12} excellent ocxo

- $1 \mathrm{ppt}, 1 \mathrm{ps} / \mathrm{s}, 86.4 \mathrm{~ns} / \mathrm{d}(\sim 100 \mathrm{~ns} / \mathrm{d})$
- $\sim 10^{-13}$ short/mid
- $\sim 3 \times 10^{-12} / \mathrm{d}$ drift

$10^{-13} \mathrm{hp} \mathrm{106B}$ quartz

- Best hp quartz
- $\sim 4 \times 10^{-13} / \mathrm{d}$ drift

Ch A: $5.0 \mathrm{MHz} 2.8 \mathrm{~V}_{\mathrm{pp}}$ Averaged Phase

Ch B: $5.0 \mathrm{MHz} 2.6 \mathrm{~V}_{\mathrm{pp}}$ $B / A=$ Single DDS

10^{-13}
 rubidium

- $8.64 \mathrm{~ns} / \mathrm{d}(\sim 10 \mathrm{~ns} / \mathrm{d})$
- $\sim 10^{-13}$ mid-term
- $\sim 1 \times 10^{-11} / \mathrm{m}$ drift

10^{-14} cesium

- $864 \mathrm{ps} / \mathrm{d}(\sim 1 \mathrm{~ns} / \mathrm{d})$
- ~10-13 mid-term
- $\sim 1 \times 10^{-14}$ @ 1 day ${ }_{\text {ron }} \quad$ Allan Deviation $\sigma_{y}(t)$

10^{-14} more cesium

- 10^{-14} not!
- Cesium clocks differ by $2 x-50 x$
- Vintage 5060A

\quad Allan Deviation $\sigma_{\mathbf{y}}(\tau)$

10^{-14} another cesium

- Not even close to $10^{-14} @ 1$ day
- FTS 4010
- Portable clock

Allan Deviation $\sigma_{\mathbf{y}}(\tau)$

10^{-15}
 hp 5071A cesium

- High-performance model
- Pair $\sim 2 \times 10^{-14}$ at a day
- Flicker floor $\sim 5 \times 10^{-15}$ in weeks

10^{-16} active h-maser

- $8.64 \mathrm{ps} / \mathrm{d}$
- Under 1×10^{-15} @1d
- Most stable

Summary - powers of ten

- 17 orders of magnitude
- From a billion times worse than earth or a pendulum clock
- To a billion times better than earth or a pendulum clock

4. kids, clocks, and relativity

-What to do with atomic clock hobby?

- Einstein said time itself is not fixed
- S.R. predicts higher speed slows time
- G.R. predicts stronger gravity slows time
- Is this only abstract theory in textbooks?
- fast moving rocket ships and twins
- objects getting too close to black holes
- Can this be tested for real on earth?

Relativity at home

- We have many atomic clocks at home
- No planes or rockets (high speed)
- But we have mountains (high altitude)

Big idea

- Take our 3 kids with portable cesium clocks high up Mt Rainier
- See if Einstein was right about gravity and time
- See if clocks really run faster up there

Einstein and 2005

- $100^{\text {th }}$ anniversary of relativity: books, magazines, radio, TV, web sites, "Physics Year", lectures...

Louis Essen (UK) and 2005

- $50^{\text {th }}$ anniversary of cesium clock (NPL)
- "famous for a second" 9192631770 Hz

Project GRE ${ }^{2}$ AT

- General Relativity Einstein/Essen Anniversary Test (2005)
- 100 ${ }^{\text {th }}$ anniversary (Einstein) theory of relativity
$-50^{\text {th }}$ anniversary (Essen) first cesium clock
- Combine atomic clock hobby, physics, history, technology, math, computers, children, car trip, vacation, and family fun

Clock equations

- To a first approximation, small v, small h
- Kinematic: $\quad \Delta f_{k} \approx-1 / 2 v^{2} / \mathrm{c}^{2}$
- Gravitation: $\Delta \mathrm{f}_{\mathrm{g}} \approx+\mathrm{gh} / \mathrm{c}^{2}$
- Sagnac:
$\Delta \mathrm{f}_{\mathrm{s}} \approx-\omega \mathrm{R}^{2} \cos ^{2}(\phi) \cdot \lambda / \mathrm{c}^{2}$
- Net freq
$\Delta f=\Delta f_{k}+\Delta f_{g}+\Delta f_{s}$
- Total time $\Delta \mathrm{T}=\sum \Delta \mathrm{f} \times \mathrm{T}$
- These corrections are usually infinitesimal

Magnify the effect

- Go as high as possible
- Stay as long as possible
- Measure as precisely as possible

Cartoon by Dusan Petricic
Scientific American column Wonders by Philip and Phyllis Morrison http://www.sciam.com/1998/0298issue/0298wonders.html

Time dilation calculation

- Turn infinitesimal into measurable
- Frequency change $\Delta \mathrm{f} \approx \mathrm{gh} / \mathrm{c}^{2}$ $\Delta f \approx 1.09 \times 10^{-16} \mathrm{~s} / \mathrm{s} / \mathrm{meter}$
- But if you go up 1 km instead of 1 m , then $\Delta f=1.1 \times 10^{-13}=0.11 \mathrm{ps} / \mathrm{s}$
- And if you stay up there 24 hours, then $\Delta \mathrm{T}=\Delta \mathrm{f} \times 86400 \mathrm{~s}=9.5 \times 10^{-9} \mathrm{~s}=9.5 \mathrm{~ns}$
- Gravitational time dilation $\approx 10 \mathrm{~ns} / \mathrm{day} / \mathrm{km}$

The GREAT trip, day 1

- Carrying clock downstairs. Limited time; car is a mess, but it works.

The GREAT trip, day 1

- Clocks in the middle, batteries on the floor, and instrumentation in the front.

The GREAT trip, day 1

- Kids in the back. Dad making final clock BNC connections; Mom says goodbye.

The GREAT trip, day 1

- Detail of TIC's and laptop in front seat and clocks in middle seat. 23:33:48 UTC

The GREAT trip, day 1

- Final gas stop and evening arrival at Rainier National Park.

The GREAT trip, day 2

- Paradise Inn is at 5400' elevation. Large parking lot to hide in.

The GREAT trip, day 2

- Classic old Northwest inn; you should visit sometime.

The GREAT trip, day 2

- Wonderful hiking trails and climbing. Lucky to have clear weather.

The GREAT trip, day 2

- Avoid a ticket and move the car again. Ouch, running low in fuel. Now what.

The GREAT trip, day 3

- Got gas at 6 AM. Used 15.78 gal in $34 \mathrm{~h}=$ 0.46 gph; ~2h/gal, so about $1 \mathrm{~ns} /$ gal.

The GREAT trip, day 3

- More hiking, exploring, playing. It's a fun place for a while.

The GREAT trip, day 3

- 42 hours is up; time to leave. We're all tired. Can this really work? Go home.

The GREAT trip

- Home clock and mountain clock elevations

Two questions

- Results are unknowable until the return
- (1) Did we see any time dilation?
- requires before/after time-rate comparison
- comparison against stable "house" clock
- (2) Did the results match prediction?
- requires record of altitude and duration
- used Garmin GPS NMEA log

Elevation and predicted dilation

Clock results (measured)

- Red
20.3 ns

Project GREAT - Single Clock - Red
3 (pre) +2 (trip) +9 (post) $=14$ days

NAWCC 2013

Mean clock results

- Mean
23.2 ns
- ± 4 ns
- Predict 22.4 ns

Project GREAT - 3 x Composite Clock 3 (pre) +2 (trip) +9 (post) $=14$ days

GRE²AT experiment worked

- Time dilation is real!
- gravitational effect (elevation, not velocity)
- we came back 22 ns older and wiser
- As astronomer Steve Allen observed:
- "relativity is now child's play"
- Unexpected press
- Physics Today, WIRED magazine
- "Best atomic clock is a good gravimeter"

5. conclusion

- A quick view of extreme timekeeping
- Electronics is not as elegant as Harrison, Tompion, or astronomical pendulum clocks of $18^{\text {th }}$ and $19^{\text {th }}$ century
- Perhaps $20^{\text {th }}$ and $21^{\text {st }}$ century laboratory clocks will get their place in history too
- Clockmaker motivation is the same
- "Origins, evolution, future of public time"

Thanks for your time

- Bob Holmstrom, Jim Cipra, Mostyn Gale, Will Andrewes, Gene Goldstein, NAWCC
- Contact: tvb@LeapSecond.com
- Web: www.LeapSecond.com

