Extreme Amateur Timekeeping: from Harrison to Einstein

Tom Van Baak NAWCC Ward Francillon Time Symposium *TIME for Everyone* Pasadena, November 2013

Outline

- Part 1 amateur timekeeping
- Part 2 precision pendulum clocks
- Part 3 powers of ten
- Part 4 kids, clocks, and relativity

1. amateur timekeeping

- An innocent beginning, 20 years ago
- LED clock project, quartz timebase

- how accurate is it?

– how to measure it?

- Use frequency counter
 - how accurate is it?

- how to measure it?

Accuracy

- 0.01/10.00 MHz = 0.1% (86 sec/day)
- 0.0001/10 = 10 ppm (0.8 sec/day)

More accuracy

- Better timekeeping needs better timebase
- Better measurement requires better counter and/or better reference
- What does it mean to "keep" time?
 - who's time are we actually keeping?
 - what is WWVB, GOES, Loran-C, GPS time?
 - what is UTC; how good are atomic clocks?
- This time stuff is all so interesting

The quest for better oscillators

NAWCC 2013

The quest for more digits

STANFORD RESEARCH SYSTEMS	MODEL SR620	UNIVERSAL TIME INTERVAL C
000	00000	noooc
777		כררו
GHz s/MHz ms/kHz		— ns/mHz — ps/µHz
MODE SOURCE GATE/ARM	SAMPLE SIZE	SCOPE AND CHART
(START) TARE COMPLEXING	AUTO NEAN XIO	100 - REL HIST SCALE AUTO

Slippery slope

- More oscillators, more test equipment
- Oscillator measurement and comparison – quartz, rubidium, cesium standards
- Improve counter speed and resolution

 microseconds, nanoseconds, picoseconds
- Books, articles, op/svc manuals, HPJ
 bad case of precise time & frequency curiosity
- Help! I've got the "time bug"

Home time & frequency lab

Museum of hp clocks

HP quartz

- **105B**
- 107BR
- **106**B
- 104AR
- 103AR
- 101A
- 100ER

HP clocks

- HP01
- 571B
- **5**321
- 117A
- 114BR
- 115BR
- 113AR

HP cesium & rubidium

- **5071A**
- 5065A
- **5062c**
- **5061B**
- **5061A**
- **5060A**

Vintage hp 5061A (eBay)

FYI: cesium (caesium)

- Cesium atomic clocks are *not* radioactive
- They use a natural, stable Cs¹³³ atom, not the scary man-made *radioisotope* Cs¹³⁷
- Analogy: C¹² vs. C¹⁴
- K³⁹ vs. K⁴⁰ (banana)
- "hyperfine transition"
 9,192,631,770 Hz
- Solid / liquid metal

What is the best clock?

- Quartz: inaccurate and drifts
- Rubidium vapor: more stable but still drifts
- Cesium beam: better still and no drift
- Hydrogen maser: most stable, small drift
- UTC itself is "average" of 345 clocks
- Exotic fountain, ion, optical clocks
- No one best clock, no perfect time

"Keeps perfect time"

Which watch is best?

• You go shopping for watches at lunch...

Which clock do you want?

- Checking each day, at precisely noon:
- (a) (b) (c) (d)
 12:00:00 12:01:30 12:03:30 12:06:11
- 12:00:0012:01:4012:03:2512:07:22
- 12:00:0012:01:2012:03:3012:08:33
- 12:00:00 12:01:10 12:03:35 12:09:44
- 12:00:00
 12:01:40
 12:03:30
 12:10:55
- Which one do you want to buy?

Which clock do you want?

- Answer:
 - (a) is probably a stopped watch
 - (b) is most accurate, but more variable
 - (c) is less accurate, but less variable
 - (d) is least accurate, but very stable
- Watch (d) is exactly 1:11 fast per 24h

 regulate (or simply apply a math correction)
 and then you have the best watch

Best wristwatch

2. precision pendulum clocks

- My timekeeping world expanded in 1995
 Bill Scolnik (pendulum and atomic clocks)
 - Dava Sobel (Longitude)
- New appreciation of historical timekeeping – NAWCC, HSN(161), books, articles, *people*
- Amazing world of horology, and again:
 - how accurate is it?
 - how to measure it?

Precise pendulum clocks

- Classic examples:
 - Riefler, Shortt, Fedchenko, and more
- Modern amateur examples:
 - Philip Woodward (W5)
 - Douglas Bateman
 - Bill Scolnik (Q1, Q2, Q3)
 - Teddy Hall (Littlemore)
 - Bryan Mumford, and more
- No amateur has out-performed a Shortt

Pendulum clock, tides

- The issue with lunar-solar "earth" tides: – period T $\approx 2\pi \sqrt{(L/g)}$
 - g (980 gal) varies by about ±100 µgal
 - in theory, this affects rate and timekeeping
- Earth-moon-sun system is complex
 - timekeeping error does not average to zero
 - this limits [best] pendulum performance
- Let's study 4 examples

Shortt-Synchronome

Fedchenko AChF-3

Littlemore clock

NAWCC 2013

Pendulum [in]stability

- Performance comparison:
 - 1. Shortt #41 (data from Pierre Boucheron)
 - -2. Fedchenko #8 (partial data)
 - 3. Littlemore (data from Teddy Hall)
 - -4. "Perfect" (computer *model* of gravity)
- Allan deviation statistics
 - short-term perturbations
 - long-term drift (environment, amplitude)

Allan deviation

- Mean, standard deviation, regression, ...
- Clock performance can be more complex:
 2nd difference method is useful
 notion of sampling interval is useful
- Allan deviation incorporates both
 - a measure of frequency instability (sigma)
 - as a function of sampling times (tau)
- Comparison of similar and different clocks

Pendulum instability(1)

Shortt

Pendulum instability(2)

Fedchenko / Shortt

Pendulum instability(3)

10⁻⁶ Allan Deviation •01 Octation •01 Octation 1d 6h **4**m 1h 1w **1**m 1y**10**⁻¹⁰ 10³ **10**⁴ 10⁶ **10**⁵ 10⁸ 10⁷ Averaging Time (seconds)

Littlemore / Fedchenko / Shortt

/tvb

Pendulum instability(4)

Pendulum insights

- There is still room for improvement!
 - Shortt, Fedchenko hit short-term limit
 - Shortt is 100x from perfect, long-term
 - Littlemore, even using quartz, is still 10x
- Someday, someone will better this – will it be you?
 - with free pendulum or hybrid quartz?
- Best pendulum clock is a good gravimeter

Fedchenko (gravimeter) 11/69

3. powers of ten

- Not all clocks are super accurate
- <u>Any</u> periodic event is can be a clock
- How regular the occurrence determines:
 how good or bad the clock is
- How continuous the events determines:
 how reliable the clock is
- The range of accuracy/stability is huge!
 all you have to do is measure it

"Powers of Ten" – inspiration

Mr Charles and Mrs Ray Eames (1977)
 – "the effect of adding another zero"

10⁻⁰ drip, drip

- Leak in ceiling
- 0.57 s ... 9.9 s
- 1.7 Hz ... 0.1 Hz

Kitchen Ceiling Water Drip 8 PM 13-Nov-2006 PST (MJD 54052)

10⁻¹ heart beat

- 10⁻¹, 0.1, 10%
- The original '1 PPS'
- Sometimes 2x, even 3x
- Much higher stability at night
- < 10% accuracy possible

10⁻¹ heart beat

- 12 h frequency plot (evening/night)
- ADEV floor is 10^{-1} from 10^{1} to 10^{4} s!

10⁻² tuning fork oscillator

- 0.01, 1%
- General Radio Type 213
 Audio Oscillator
- 1 'kc'; f = ~992.8 Hz
- ±1.3 mHz (60 x 1 s)
- Accuracy < 1%
- Count those 9's
- ADEV is 10⁻⁶...10⁻⁴

992.897,	388,71	HZ	
992.896,	598,37	Hz	
992.896,	556,22	Hz	
992.896,	560,05	Hz	
992.897,	374,78	Hz	
N	60		
STD DEV:	0.001,	,387,672 H	z
MEAN :	992.89	98,857,676	Hz
MAX :	992.90	01,768,32	Hz
MIN :	992.89	96,168,74	Hz
992.898,	234,03	Hz	
992.898,	247,28	Hz	
992.897,	293,73	Hz	
000 007	564 75	1.1-1	

10⁻² tuning fork oscillator

10^{-3} precision tuning fork

- 0.001, 0.1%, 1 ms/s
- General Radio Type 813
 single vacuum tube
- 1 'kc' tuning fork
- f = ~999.4 Hz
- ±400 µHz (60 x 1 s)
- Accuracy < 0.1%
- ADEV is 10⁻⁷...10⁻⁴

999.403,9J0,97 HZ
999.463,932,59 Hz
999.464,159,16 Hz
999.465,063,84 Hz
999.463,826,22 Hz
999.464,577,00 Hz
N : 60
STD DEV: 478.778 uHz
MEAN : 999.464,134,273 Hz
MAX : 999.465,477,73 Hz
MIN : 999.463,290,13 Hz
999.464,657,58 Hz
999.464,554,46 Hz
000 464 006 05 W-

10⁻³ precision tuning fork

10⁻⁴ mechanical oscillator

- 0.01%, 100 ppm
- Mechanical oscillator transistorized
- "Four 9's"

000 007 011	
999.907,211,	
999.907,250,	33 Hz
999.907,273,	
999.907,311,	
999.907,250,	
999.907,345,	
N : 60	
STD DEV: 151	812 uHz
MEAN : 999	0.907,159,334 Hz
	9.907,404,05 Hz
MIN : 999	9.906,840,54 Hz
999.907,392,	20 Hz
999.907,415,	25 Hz
999.907,354,	
000 007 1001	

10⁻⁵ mains (line frequency)

- 0.001%, 10 ppm
- 60± Hz

60.003,640,720,5	HZ
60.009,491,393,8	Hz
60.000,431,181,6	Hz
59.992,198,219,9	Hz
59.987,371,509,5	Hz
59.993,148,200,6	Hz
59.999,032,462,5	Hz
59.985,892,634,1	Hz
59.995,727,396,2	Hz
N : 36	
STD DEU: 0.006,76	5,596,40 Hz
MEAN : 59.999,5	54,563,23 Hz
MAX : 60.010,3	90,980,5 Hz
MIN : 59.985,8	92,634,1 Hz
59.996,011,518,6	Hz
E0 000 E00 100 7	11-

60 Hz Mains Frequency Deviation Histogram 2.7 million one second samples (~1 month)

10⁻⁵ mains (line frequency)

10⁻⁶ quartz watch (RC)

- 0.0001%, 1 ppm, 1 µs/s
- +160 ms/d = +1.85 ppm

10⁻⁶ quartz watch (RC)

- Nightly WWVB radio sync (60 kHz)
- Look closely at 01:30 AM PST
- +1h +30m +15s
- Plot of 9 days
- Rate variations
- Sync variations

10⁻⁷ chronometer

- 0.1 ppm
- Rated ¼ sec/day deviation

10⁻⁷ chronometer

- ~55 hour runtime
- 200 ms phase residuals
- ADEV 6×10⁻⁷

10⁻⁷ chronometer

- From 1940's USN manual...
- Phase
 - Dial error
- Frequency
 Daily rate
- Drift
 - Deviation in rate

Date	Dial Error + = Fast - = Slow				Remarks
	Min	Sec	- 2000	Rate	
ot 1948					
3	+0	2			Started+Set
4	+0	22	+ 1/2		
5	+0	2 1/2	0	14	
6	+0	3	+ 1/2	1/4	
7	+0	3	0	Y4	
8	+0	31/2	0 + 1/2	1/4	
9	-	-	_		Not wound
10	+0	4	+ 1/4	-	Act wound 2 day ang.
In				+1/4 secone noted a c	nd)

10⁻⁸ pendulum clock

- 0.01 ppm, 10 ppb 10 ns/s, 864 μs/d
- Shortt,
 Fedchenko,
 Riefler,
 'Littlemore'

10⁻⁸ pendulum clock

54

10⁻⁹ earth

- 0.001 ppm
- Slow by ~2 ms per day
- Also somewhat irregular
- ADEV 10⁻⁸ ~ 10⁻⁹

- Limited by core, weather, climate
- Lunar/solar tides, periodic variations
- Tidal friction, long-term drift

10⁻⁹ earth (40y of data)

56

10^{-9} earth clock

- Long-term plot (300 years)
- Length of day (LOD) is 86,400 seconds ± a few milliseconds

10^{-9} earth clock

- Short-term plot (3 recent years)
- LOD is about 86,400.002 seconds

10^{-9} earth clock

tvb

NAWCC 2013

10^{-9} earth frequency standard

- Suggested improvements:
 - Thoroughly clean, and dry with cloth
 - Remove surrounding gas and water vapor
 - Wait for core to cool before use
 - Re-align axis of rotation (wobbling)
 - Keep away from nearby moon (tides)
 - Keep away from sun (tempco)
 - Re-adjust rate (avoid leap seconds)

10-10 ocxo

- 0.1 ppb, 100 ps/s, 8.64 µs/d
- 10⁻¹⁰...10⁻¹³ short
- 5×10⁻¹⁰/d drift

NAWCC 2013

10-11 good ocxo

- 0.01 ppb, 10 ps/s, 864 ns/d (~1 μs/d)
- 10⁻¹¹...10⁻¹³ short
- ~10⁻¹¹/d drift

62

10⁻¹² excellent ocxo

- 1 ppt, 1 ps/s, 86.4 ns/d (~100 ns/d)
- ~10⁻¹³ short/mid
- ~3×10⁻¹²/d drift

10-13 hp 106B quartz

Best hp quartz
~4×10⁻¹³/d drift

10⁻¹³ rubidium

- 8.64 ns/d (~10 ns/d)
- ~10⁻¹³ mid-term
- ~1×10⁻¹¹/m drift

NAWCC 2013

10-14 cesium

- 864 ps/d (~1 ns/d)
- ~10⁻¹³ mid-term
- ~1×10⁻¹⁴ @ 1 day

NAWCC 2013

10⁻¹⁴ more cesium

- 10⁻¹⁴ not!
- Cesium clocks differ by 2x 50x
- Vintage 5060A

10⁻¹⁴ another cesium

- Not even close to 10⁻¹⁴ @ 1 day
- FTS 4010
- Portable clock

10⁻¹⁵ hp 5071A cesium

- High-performance model
- Pair ~2×10⁻¹⁴ at a day
- Flicker floor ~5×10⁻¹⁵ in weeks

10⁻¹⁶ active h-maser

- 8.64 ps/d
- Under 1×10⁻¹⁵ @1d
- Most stable

NAWCC 2013

Summary – powers of ten

- 17 orders of magnitude
- From a billion times worse than earth or a pendulum clock
- To a billion times better than earth or a pendulum clock

4. kids, clocks, and relativity

- What to do with atomic clock hobby?
- Einstein said time itself is not fixed
 S.R. predicts *higher speed* slows time
 G.R. predicts *stronger gravity* slows time
- Is this only abstract theory in textbooks?
 fast moving rocket ships and twins
 objects getting too close to black holes
- Can this be tested for real on earth?

Relativity at home

- We have many atomic clocks at home
- No planes or rockets (high speed)
- But we have mountains (high altitude)

Big idea

- Take our 3 kids with *portable* cesium clocks high up Mt Rainier
- See if Einstein was right about gravity and time
- See if clocks really run *faster* up there

Einstein and 2005

 100th anniversary of relativity: books, magazines, radio, TV, web sites, "Physics Year", lectures...

Louis Essen (UK) and 2005

- 50th anniversary of *cesium* clock (NPL)
- "famous for a second" 9 192 631 770 Hz

Project GRE²AT

- General Relativity Einstein/Essen Anniversary Test (2005)
 - 100th anniversary (Einstein) theory of relativity
 - 50th anniversary (Essen) first cesium clock
- Combine atomic clock hobby, physics, history, technology, math, computers, children, car trip, vacation, and family fun

Clock equations

- To a first approximation, small v, small h
- Kinematic: $\Delta f_k \approx -\frac{1}{2} v^2 / C^2$
- Gravitation: $\Delta f_a \approx +gh/c^2$
- Sagnac: $\Delta f_s \approx -\omega R^2 \cos^2(\phi) \cdot \lambda / c^2$
- Net freq $\Delta f = \Delta f_k + \Delta f_q + \Delta f_s$
- Total time $\Delta T = \sum \Delta f \times T$
- These corrections are usually infinitesimal

Magnify the effect

- Go as high as possible
- Stay as long as possible
- Measure as precisely as possible

Cartoon by Dusan Petricic Scientific American column Wonders by Philip and Phyllis Morrison http://www.sciam.com/1998/0298issue/0298wonders.html

NAWCC 2013

Time dilation calculation

- Turn *infinitesimal* into *measurable*
- Frequency change $\Delta f \approx gh/c^2$ $\Delta f \approx 1.09 \times 10^{-16} \text{ s/s/meter}$
- But if you go up $\frac{1 \text{ km instead of } 1 \text{ m}}{\Delta f} = 1.1 \times 10^{-13} = 0.11 \text{ ps/s}$
- And if you stay up there <u>24 hours</u>, then $\Delta T = \Delta f \times 86400 \text{ s} = 9.5 \times 10^{-9} \text{ s} = 9.5 \text{ ns}$
- Gravitational time dilation ≈ 10 ns/day/km

 Carrying clock downstairs. Limited time; car is a mess, but it works.

• Clocks in the middle, batteries on the floor, and instrumentation in the front.

• Kids in the back. Dad making final clock BNC connections; Mom says goodbye.

 Detail of TIC's and laptop in front seat and clocks in middle seat. 23:33:48 UTC

 Final gas stop and evening arrival at Rainier National Park.

Paradise Inn is at 5400' elevation. Large parking lot to hide in.

Classic old Northwest inn; you should visit sometime.

• Wonderful hiking trails and climbing. Lucky to have clear weather.

• Avoid a ticket and move the car again. Ouch, running low in fuel. Now what.

Got gas at 6 AM. Used 15.78 gal in 34 h = 0.46 gph; ~2h/gal, so about 1 ns/gal.

• More hiking, exploring, playing. It's a fun place for a while.

• 42 hours is up; time to leave. We're all tired. Can this really work? Go home.

The GREAT trip

Home clock and mountain clock elevations

Two questions

- Results are <u>unknowable</u> until the return
- (1) Did we see any time dilation?
 requires before/after time-rate comparison
 comparison against stable "house" clock
- (2) Did the results match prediction?
 requires record of altitude and duration
 used Garmin GPS NMEA log

Elevation and predicted dilation

Clock results (measured)

Red
 20.3 ns

Project GREAT - Single Clock - Red

Mean clock results

- Mean
 23.2 ns
- ±4 ns
- Predict
 22.4 ns

GRE²AT experiment worked

- Time dilation is real!
 - gravitational effect (elevation, not velocity)
 - we came back 22 ns older and wiser
- As astronomer Steve Allen observed:
 - "relativity is now child's play"
- Unexpected press
 - Physics Today, WIRED magazine
- "Best atomic clock is a good gravimeter"

5. conclusion

- A quick view of extreme timekeeping
- Electronics is not as elegant as Harrison, Tompion, or astronomical pendulum clocks of 18th and 19th century
- Perhaps 20th and 21st century laboratory clocks will get their place in history too
- Clockmaker motivation is the same
- "Origins, evolution, future of public time"

Thanks for your time

- Bob Holmstrom, Jim Cipra, Mostyn Gale, Will Andrewes, Gene Goldstein, NAWCC
- Contact: tvb@LeapSecond.com
- Web: www.LeapSecond.com

