455-12 9/1/81

AU 233

OR 4,287,597

Ex

58/23 R, 24 R; 343/225

United States Patent [19]

Paynter et al.

4,287,597 [11]

[45] Sep. 1, 1981

[54]	SATELLITE CONTROLLED CLOCK					
[75]	Inventors:	Donald A. Paynter; Lee Burpee, both of Goleta, Calif.				
[73]	Assignee:	Arbiter Systems Incorporated, Goleta, Calif.				
[21]	Appl. No.:	939,849				
[22]	Filed:	Sep. 5, 1978				
[51] [52]	Int. Cl. ² U.S. Cl					
[58]	Field of Sea 358/1	rch				

[56] References Cited U.S. PATENT DOCUMENTS

3,798,650 3/1974 McComas et al. 343/225 3,824,548 7/1974 Sullivan et al. 325/363

Primary Examiner—Benedict V. Safourek Attorney, Agent, or Firm-Wagner & Bachand

ABSTRACT

A satellite disseminated time and date code is received and converted into local time signal and displayed. The ground stations scan a frequency spectrum for signals from geosynchronous satellites. Once found, the position and time information from the satellites is used to compute the correct local time.

24 Claims, 23 Drawing Figures

FIG. 4a

COUNTERS W2-10 EXT 1PPS

SATELLITE CONTROLLED CLOCK

BACKGROUND OF THE INVENTION

A unique service has recently become available 5 throughout the whole of the Americas and even portions of Oceania and Europe with the launching of the GOES (Geostationary Operational Environmental Satellite) of the United States National Oceanic and Atmospheric Administration. Through cooperation with the 10 United States National Bureau of Standards, a satellite disseminated time code is relayed from Wallops Island, Virginia to two stationary or synchronous satellites approximately 36,000 kilometers above the equator and geostationary. Time and data code signals along with 15 observed satellite position information are transmitted by both satellites, the eastern and the western satellites. The time codes and information are available to any receiver capable of detecting and decoding the transmission.

The operational characteristics of the GOES satellites are described in Publication TFS-602 and titled NBS TIME VIA SATELLITES issued by the United States Bureau of Standards Boulder, Colorado 80302 on Jan. 1, 1978. Described in that publication and in the description below is the signalling format used by the satellites.

tion be repeated if an error is decircuitry also compares received satellite with the displayed time rect the display if it is incorrect. Our receiver also includes programment of set for time zones to provide an offset for time zones to provide the display of the satellites.

The operation of the satellite time system and a receiver capable of detecting, decoding and displaying time signals from the satellites is described in U.S. Pat. 30 No. 4,014,166 issued on Mar. 29, 1977 to Joseph V. Cateora et al and assigned to the U.S. Government.

The receiver disclosed in U.S. Pat. No. 4,014,166 receives and decodes the time codes but has no provision for correcting for satellite errors or for time error 35 corrections for the receivers actual position or to obtain true local, zone or UTC time. The net result is that the accuracy available via satellite time is significantly degraded in any known receiver with which we are familiar.

BRIEF STATEMENT OF THE INVENTION

Given the foregoing State of the Art, we have determined that the value of satellite time can be greatly enhanced if the receiver can calculate the total transmission path delay incorporating the effects of actual transmitter, satellite and receiver position. Since the satellite position is transmitted as part of the code sequence and the transmitter and receiver positions are known it is possible employing our invention to provide continuous, accurate time display with these parameters and any changes which occur in satellite position or receiver position to be introducable into time corrections.

We have also found it possible to decode and display the one pulse per second signal provided by the GOES 55 satellites and to generate a local similar signal which acts as a local clock for local use in controlling other equipment and to maintain a display during periods of non-operation of the GOES satellite or interference conditions. We have also developed circuitry which 60 will continuously compare any local external clock 1 pulse per second time with satellite 1 pulse per second signal and to generate and display a deviation signal if it exists between the two.

We have also discovered that it is possible to generate 65 and introduce offset signals to provide for the local time zone and for daylight savings time to allow these corrections to be made in the display without otherwise

Basically our invention involves a coherent synchronous digital ultra high frequency receiver which receives signals from a broad band antenna having its own preamplifier stage and providing satellite signals at —120 dbm or greater to the receiver in the 468.8 MHz range. This frequency range includes signals at 468.8375 MHz from the Eastern Satellite and Western Satellite signals at 468.8250 MHz.

The receiver includes automatic tuning circuitry which scans the selected frequency band for the Satellite chosen. When the receiver detects the Satellite signal it shifts to a synchronization mode employing the synchronizing circuitry of the receiver. The receiver also includes delay path calculation circuitry which is enabled after the receiver is synchronized with the satellite signal.

Signal calculation processor circuitry includes a selfcheck circuit which requires that the delay path calculation be repeated if an error is detected. The selfcheck circuitry also compares received time signals from the satellite with the displayed time of the receiver to correct the display if it is incorrect.

Our receiver also includes provision for introducing an offset for time zones to provide local time as well as standard or daylight savings time. Our receiver further includes provision for locking out erroneous satellite time and position information.

Our receiver additionally includes a time interval measurement circuit for measuring the time deviation of a user supplied 1 pulse per second external clock with respect to the satellite time. This circuitry drives a deviation display which continuously represents any deviation of the local signal from the received standard clock pulses from the satellite.

BRIEF DESCRIPTION OF THE DRAWING

This invention may be more clearly understood from the following detailed description and by reference to the drawing in which:

FIG. 1 is a pictoral representation of the typical operational situation found for this invention;

FIGS. 1a and 1b are simplified graphical presentations of the geometric relationships involved in the operation of this invention;

FIG. 2 is an interrogation channel format diagram of satellite signals of FIG. 1;

FIG. 3 is time code format diagram;

FIG. 4 is a front elevational view of the receiver of

FIG. 4a is a rear elevational view thereof;

FIG. 5 is a block diagram of this invention;

FIG. 6 is an electrical schematic diagram of the RF amplifier, voltage controlled oscillator and mixer of this invention;

FIG. 7 is an electrical schematic diagram of the IF amplifier and phase detector thereof;

FIG. 8 is an electrical schematic diagram of the voltage controlled oscillator thereof;

FIG. 9 is an electrical schematic diagram of the data detector and data clock synchronizer thereof;

FIG. 10 is an electrical schematic diagram of the phase detector slew control thereof;

FIG. 11 is an electrical schematic diagram of the processor thereof;

FIG. 12 is an electrical schematic diagram of the processor input and output circuitry thereof;

FIG. 13 is an electrical schematic diagram of the time delay calculator thereof:

FIG. 14 is an electrical schematic diagram of the time 5 delay counter;

FIG. 15 is an electrical schematic diagram of the display thereof;

FIG. 16 is an electrical schematic diagram of the output buffer thereof;

FIG. 17 is an electrical schematic diagram of the IRIG-B amplitude modulator; and deviation analog circuitry;

FIG. 18 is an electrical schematic diagram of the receiver position delay switch:

FIGS. 19, 20 and 21 constitute a flow chart for the tuning, synchronization and delay path compensation operation of this invention; and

FIG. 22 is an arrangement diagram for FIGS. 19, 20 and 21.

DETAILED DESCRIPTION OF THE INVENTION

Now referring to FIG. 1, an operational situation involving this invention is illustrated employing the 25 Eastern Satellite 10 and the Western Satellite 11 each relative geostationary above the equator respectively at 135 and 75 degrees west longitude. These satellites are approximately 36,000 kilometers above the surface of the earth and at their relatively stationary orbits may be 30 received by appropriate radio receivers over the North American continent and most of South America while the Eastern Satellite 10 may be received throughout the North and South Atlantic oceans, parts of Europe and Africa. The Western Satellite 11 has coverage of virtu- 35 ally the entire Pacific Ocean. Time information, date information and Satellite position information is transmitted to both of these Satellites from an installation at Wallops Island Virginia represented by antennas 12 and 13 each directed towards a respective Eastern or West- 40 ern Satellite. As described in the National Bureau of Standards document the time code, data code and satellite position is transmitted employing phase shift modulated carrier and are right hand circularly polarized. The data rate is 100 bits per second and band width of 45 the transmission 400 Hz. The time code is time division multiplexed (interlaced) with interrogation messages. Once every half-second, a time code word, 4 bits, is transmitted. A complete time code is transmitted every 30 seconds beginning on the half-minute giving the day 50 of the year, hour, minute, and second. The format and location of each time code word as well as relative length is illustrated in FIG. 2. The time code frame consists of the synchronization word e.g. 40 bits of alternating ones and spaces followed by encoded day, 55 North Pole) using spherical trigonometry as follows: hours, minutes and seconds. The universal time correction, plus satellite position, latitude, longitude and radius, complete the entire code frame which is transmitted for a period of thirty seconds. This is illustrated in FIG. 3. Referring again to FIG. 1, a receiver 14 and its 60 associated antenna 15 is shown as located within the field of view of both satellites 10 and 11 and thus can receive time code signals from either of the satellites. The entire continental United States falls within this dual satellite area. The antenna 15 and the receiver 14 65 are shown as located at North 34.45 degrees latitude and West 119.83 degrees longitude a location approximating Santa Barbara, California.

SATELLITE GEOMETRY

The geometric relationship of the earth and either satellite is illustrated in FIG. 1a, which is derived from the National Bureau of Standards Technical Note 638, "A Synchronous Satellite Time Delay Computer", July, 1973, to which reference should be made for further explanation.

Suffice it to say the path delay calculations accomplished by this invention involve the solution of the geometric relationship there described. Referring now to FIG. 1a, the method used in calculating the path delay is to first solve the triangle formed by straight lines joining the satellite 10, the center of the earth and 15 the antenna 15 site This solution from plane trigonome-

$$r = \sqrt{R^2 + h^2 - 2Rh\cos\beta} \tag{1}$$

where r is the range from the antenna 15 to the satellite, R is the distance from the satellite 10 to the center of the earth, h is the distance from the receiver to the center of the earth and β is the central angle between the subsatellite point and the receiver. The quantity R is a component of the satellite's position and is available via the satellite broadcast. The quantity h is related to the geodetic latitude, ψ , of a site by the following equation

$$h = a \sqrt{\frac{1 + \frac{b^4}{a^4} \tan^2 \phi}{1 + \frac{b^2}{a^2} \tan^2 \phi}},$$
 (2)

where a=6378.2064 km, the earth's semi-major axis; and b=6356.5838 km, the earth's semi-minor axis.

For use in the equations below, the geocentric latitude, ϕ' , is computed from the geodetic latitude, ϕ , by the following equation.

$$\tan \phi' = (b^2/a^2) \tan \phi. \tag{3}$$

The sub-satellite latitude is already referenced to the center of the earth and does not need to undergo this transformation. In the following discussion, λ is longitude and subscripts s and r denote sub-satellite point and receiver site respectively.

All that is left then is the computation of $\cos \beta$. The direct solution may be obtained from the triangle consisting of the sub-satellite point, the site, and the intersection of the z axis with the spherical earth (i.e., the

$$\cos \beta = \sin \phi_r' \sin \phi_s + \cos \phi_r' \cos \phi_s \cos |\lambda_s - \lambda_r|. \tag{4}$$

Using equations (1) through (4), the "down-link" free space propagation delay from the satellite to the receiver is easily determined by dividing the range by the velocity of free space propagation (0.2997925 km/μs). The procedure must be repeated substituting the transmitter for the receiver location to determine the "uplink" delay. The total free space propagation delay, then is the sum of the delays computing using the transmitter and receiver locations. The change in signal velocity through the troposphere and ionosphere and

the accompanying ray bending can be shown to introduce only a few microseconds difference in the roundtrip free space propagation time when operating above 100 MHz [2].

THE RECEIVER

The receiver of this invention and its operational controls may be seen in FIG. 4 as including the power switch 16 and a satellite selector switch 20 having two positions, East and West. A plurality of thumb wheel 10 switches 21 are used to introduce the latitude information and a similar set of thumb wheel switches 22 are used to introduce longitude of the receiver into the receiver logic circuitry. The front panel receiver includes a jack 23 for introducing a one pulse per second 15

The receiver includes a display panel 24 including three LED displays indicating the status of the receiver operation

LED display 25 is illuminated during the period in ²⁰ which the receiver is automatically tuning through the band which includes the satellite selected by selector switch 20. LED 26 is illuminated after tuning has been terminated and the satellite detected. The synchronizing of the local clock with the time code signals is signaled by the illumination of LED 26. After satellite detection and synchronization is accomplished the LED 25 and 26 are no longer lighted but LED 30 is illuminated to indicate that the delay path calculation is in process. Once each of these steps have been completed each of these displays 25, 26, and 30 are no longer illuminated and the correct day, hour, minute and second are displayed. One further display is present in the form of micro-seconds deviation between a user supplied external 1 PPS clock input and the 1 PPS signal as received from the satellite. Normally the deviation signal input is not illuminated if a local clock 1 PPS input is not present.

FIG. 4a shows the rear of the receiver including 40 cooling fan 27, air inlet 28 and jacks for the input of signals from antenna 15 of FIG. 1 and output of Ppulse per second, one MHz timing or clock signal and time data in IRIG-B format from the data out jack. A line cord unshown supplies 115 v 60 Hz power to the re- 45 then applied to the input logic interface stage IC3 for ceiver.

For an understanding of the operation of the receiver with the inputs and displays illustrated in FIG. 4, one should now direct their attention to the block diagram of the receiver FIG. 5.

Now referring to FIG. 5 the antenna 15 is shown with its associated preamplifier 35 normally physically associated with the antenna and typically composed of two low noise tuned RF stages with associated bias control circuits in order to provide the required signal level to 55 the receiver to follow. The receiver includes a receiver Section 36 composed of an RF amplifier 40, a mixer 41 and voltage control oscillator 42, an IF amplifier 43, and a phase and data detector 44 and 45 respectively, the latter of which includes clock synchronizing cir- 60 cuitry. The data phase detector also includes clock slew control circuitry. VCO control circuit 59 completes this section.

The next section of the receiver is the logic section 50 comprising a data decoder 51 and control processor 52, 65 a time delay calculator 53, a time delay generator 54 and an output buffer stage 55 as well as a time delay generator and time deviation control circuit 54.

A display section 60 includes the receiver status display 25, 26, and 30 and the date and time display 61 and the clock deviation 62. A switch section 70 includes each of the control switches including the satellite select switch 20 a reference select switch 71, a local time switch 72, a receiver delay switch 73 and the longitude and latitude control switches 21 and 22 as shown in FIG. 4.

DETAILED CIRCUITRY

For a better understanding of this invention, each of the circuits are described as to their makeup in the preferred embodiment including actual component values and designations which appear on the drawing and which are actually used in the commercial embodiment of this invention. In the following schematic diagrams integrated circuits also include reference to pin numbers and Reference J refers to jumper and pin numbers as assistance to the reader.

Referring now to FIG. 6, the RF amplifier voltage controlled oscillator and mixer section may be seen in detail therein. The RF amplifier 40 includes two tuned amplifier stages Q1 and Q2 with their associated tuning networks with the output of the tuned amplifier 40 applied to a mixer stage 41 employing Q3 as its active element. The other input to the mixer stage is driven from the 438.8250 MHz or 438.8375 MHz output of the VCO section which is made up of voltage control oscillator 42 including a crystal XTL1 and two stages Q4 and Q5 which operate at one/eighth the VCO output frequency. The frequency multiplier amplifier composed of stages Q6 and Q7 is used to develop the final VCO output which is supplied to mixer 41.

IF AMPLIFIER AND PHASE DETECTOR

The schematic of the IF amplifier and phase detector 43 appear in FIG. 7 in which the output of the mixer 41 is coupled to the crystal filter 1 of FIG. 7 via inductor L14 which is tuned by the mixer output tuning capacitor for 30 MHz resonance. After filtering, the signal is amplified by linear amplifier IC1. A tuned interstage coupling network composed to capacitors C43, C44, and inductor L16 is used to couple the amplifier output to limiter stage IC2. The output of the limiter of IC2 is conversion to emitter-coupled logic levels. A high speed phase detector IC4 is employed to detect phase differences between the 30 MHz signal derived from the satellite transmission and the crystal controlled 30 MHz 50 reference oscillator OSCI. The phase detector pulse outputs are integrated by RC networks R25, C53, and R26, C54, before they are applied to the inputs of operational amplifier IC5. This amplifier produces the resultant phase detector output containing data encoded modulation signal on lead labelled ϕ . A divide by two stage IC6 reduces the reference oscillator frequency output to 15 MHz for operation of the processor circuitry described below.

VCO CONTROL

The VCO control circuitry of FIG. 8 receives the phase detector output and produces a control voltage which tunes the VCO crystal oscillator for reception of the desired satellite signal. The control output labeled VCO on FIG. 8 is developed by operational amplifier. IC11A in response to the combined inputs from the satellite select 20, the digitally stepped automatic tuning voltage from operational amplifier IC11B and the integrated phase detector output developed by operational amplifier IC10B. The integrator circuit correctively adjusts the VCO output frequency so that there is minimum average phase difference output from the phase detector. A counter IC15 and digital to analog con- 5 verter R48 are used to develop the automatic tune voltage whenever called upon by control circuitry actions or whenever the integrator output approaches a limit in its operating range.

A phase reference voltage, labeled ϕ REF is devel- 10 oped for use in the data recovery section of the receiver. The voltage is developed by a switching filter composed of IC8 and IC9 in combination with the RC network R34, C56, and C57 and R37, R38 and C58. A output.

DATA DETECTOR AND DATA CLOCK SYNCHRONIZER

The satellite modulation signal as produced by the 20 phase detector contains self-clocked Manchester encoded data. It is necessary to develop a nonreturn-tozero (NRZ) bit pattern and separate precisely synchronized data clock for operation of the data decoding and timing circuitry located on the main logic panel.

FIG. 9 shows the circuitry for performing the data and data clock recovery functions. The ϕ and ϕ REF signals from the phase detector 43 and VCO control sections 46 of FIG. 8 are applied to the input of a comparator IC18A to yield logic level voltage excursions 30 representing the input modulation data pattern. Since the phase modulation data may contain considerable noise, it is necessary to filter the digital output of the comparator IC18A in order to provide reliable digital ing shift register IC19 in combination with RC network R70, C68 and comparator IC18D. Decoding of the Manchester data is performed by the output shift register IC33A and B in concert with the synchronized timing pulses developed in the data clock synchronization 40 circuitry. Decoding errors are detected by IC34 and exclusive-or gate circuitry IC35. The error signal output is utilized by the processor-decoder to eliminate processing errors due to improperly decoded Manchester data.

Data clock synchronization is accomplished by comparison circuitry located on the main logic circuitry operating in response to clock pulses derived from the receiver 100 Hz data transitions and from a 100 Hz clock derived from the reference oscillator of FIG. 7. 50 The 100 Hz data transition pulses, labeled RCVR 100 Hz, are developed from comparator IC18A, pulse generator IC20, and decode counter Ic21. The synchronized 100 Hz clock, labeled 100 Hz, is the output obtained from countdown circuits IC128, IC29, IC25B 55 and IC30. This 100 Hz signal provides the basic timing of the clock time and data circuits.

Synchronization is achieved in two steps with coarse synchronization to within 100 or 200 microseconds occuring during initialization and secondly close syn- 60 chronization to within a few microseconds occuring through the operation of the 100 Hz phase detector and slew control of FIG. 10. During the initialization procedure, counter circuits 31, 24B, and 32 activates gate 37A whenever the 100 Hz clock persistently deviates from 65 synchronization with the receiver 100 Hz by more than 500 microseconds. This gate permits direct synchronization to occur by allowing receiver data transition

pulses to pass to the reset circuitry of the countdown

100 Hz PHASE DETECTOR AND SLEW CONTROL.

Fine synchronization of the 100 Hz clock is achieved by the action of the phase detector and slew control circuit shown in FIG. 10. A phase detector, 73, detects phase differences between the 100 Hz clock and the received 100 Hz from the satellite transmission. The phase difference signals actuate counters 80 and 82 depending upon whether a leading or lagging phase error exists. The phase errors are counted over a 1 second time period and the resulting counter accumulabuffer amplifier IC10A produces the desired reference 15 tions are compared by comparator 81. If the counts are equal no action occurs. If one counter exceeds the other, then a corresponding output is passed to the shift registers 83. A majority logic circuit 84 monitors the shift register outputs and develops a lead or lag output provided 3 out of 4 of the previous shift register inputs have the same value. The lead or lag outputs actuate D flip-flops 87 and 89 to respectively subtract or add one count to the 1 MHz pulse stream produced at gate 76. The remaining control circuitry provides sampling 25 pulses and internal/external clock reference control.

DATA DECODER AND CONTROL PROCESSOR

The data and 100 Hz synchronized data clock produced by the previous circuitry is decoded by the processor circuit shown in FIG. 12 to produce the desired time and calculator control outputs. The received data message is in the form shown in FIG. 2. FIG. 11 shows the processor and memory circuitry and FIG. 12 shows the I/O circuits. Data inputs from the receiver and data. The filter function is accomplished by a recirculat- 35 switch circuitry are entered via IC25. The calculator is driven by output 27 and the time outputs are driven by outputs 28 and 29. The IRIG controls are produced by decoder 16, gates 11 and 12 and counters 13, 14, 20, and **21**, of FIG. **12**.

The 8080 clock signals are generated by clock generator 2 of FIG. 11 and synchronized to 15 MHz derived from the receiver 30 MHz reference oscillator of FIG. 7. A one MHz reference clock is developed by divide by 15 counter 5 for use by the 100 Hz slew control 45 circuitry.

TIME DELAY CALCULATOR

FIG. 13 shows the time delay calculator. Keying signals for operation of the calculator are developed by gates 33 and 35 in response to commands from the processor section. These signals are applied to the calculator composed of integrated circuits IC34, IC39, and IC40. The calculator output is decoded to BCD digits by decoder circuit 42 and then fed to shift register 48, 49, and 50 for return to the processor, of FIG. 11.

The calculations performed by the time delay calculator of FIG. 13 consistently a part of the program set forth as Appendix A hereof in carrying out the significance of FIGS. 19-21 of the drawing.

TIME DELAY GENERATOR

The 1 PPS pulse developed from the satellite signal must be delayed by the amount determined in the path delay calculation. FIG. 14 shows the delay circuitry and includes shift register (IC58, IC59, and IC60) that receives the calculation result from the processor. This number is applied to down-counter IC55, IC56, IC56 each time a satellite derived 1 Hz pulse is received. The

down-counter produces an output pulse after counting by the applied number to produce the desired delay corrected 1 PPS signal.

Time difference between an external 1 PPS input and the corrected 1 PPS output is developed by the remaining circuitry. Latches IC68 are operated by the delay corrected 1 PPS and external 1 PPS. Their outputs are applied to exclusive-or gate 66 and flip-flop 64 to produce a 1 MHz pulse train whose duration equals the ers IC52, IC53, and IC54 and flip-flop 64 produce the time difference sign information. The pulse train and sign signals along with strobe and reset signals are generated for use by the time deviation display.

DISPLAY

FIG. 15 shows the display circuitry. The time digits D4 through D11 contain latches and 7 segment decoders and drivers along with the 7 segment display.

Multiplexed time data from the processor is applied 20 prior to tuning and synchronization. to the time displays D4-D11 and entered into the appropriate display digit according to the time strobe pulses.

A 3-digit display to the right contains decimal counters as well as 7 segment encoders, drivers and display elements for generation and display of the deviation 25 data. The deviation pulse train is counted by the decimal counters to produce the desired output. Gating circuits 3 stop the counting at 999 to indicate over-range if the pulse train is 1 millisecond or longer. Display 31 PPS internal or external reference as compared with corrected satellite 1 PPS signals.

OUTPUT BUFFER

FIGS. 16, and 17 show the output buffer, IRIG-B 35 modulator, and deviation analog circuit respectively. Pulse stretchers 90 of FIG. 16 are used to provide 1 millisecond pulses from the 1 PPS and data valid pulses generated by previous circuitry. The multiplexed time data lines from the processor are buffered to drive the 40 then indicate the correct time. output lines.

Amplitude modulated IRIG-B signals are produced by modulator 100 of FIG. 17 in conjunction with operational amplifiers 101 and 102. A digitally synthesized sine wave with a 3 to 1 amplitude modulation pattern is 45 developed.

Digital to analog converter 98 produces an output proportional to the decimal number developed by the deviation display. Operational amplifier 99 produces a positive output equal to the converter output when the 50 sign data is positive and produces a negative output when the sign data is negative.

OPERATION, TUNING

The receiver is ready to operate once power is sup- 55 plied and the antenna 15 is connected. It is necessary to set the front panel longitude and latitude switches 21 and 22 to the values representing the receiver location. These may be obtained from an accurate map, and should be determined to 0.01° for maximum accuracy in 60 time recovery. Receiver operation is fully automatic once power is applied and the satellite switch 20 is set to receive the desired satellites 10 or 11, Eastern or Western. Operation of the front panel satellite switch 20 initiates the tuning and synchronization functions and in 65 is registered, the satellite position change counter is addition resets the processor controller to accept new data. The status lights 25, 26, and 30 will indicate the particular mode of operation. Initially the Tune light is

10

illuminated and remains "on" during the tuning operation, and the seconds display begins to count seconds. The tuning operation is slow in terms of electronic speed and may require tens of seconds to complete. The tuning operation is illustrated in the flow diagram of FIG. 19.

Referring now to FIG. 19, the first block of flow diagrams involves the initiation of operation by power on or satellite selection, next setting all logic to zero time difference between the two 1 PPS signals. Count- 10 state and then commencing tuning by control voltage of FIG. 6 applied to voltage variable capacitor CR1 of FIG. 6. Automatic tuning involves stepped voltages applied to CR1 of FIG. 6, tunes the VCO to the satellite frequency where the receiver locks to satellite carrier. 15 Meanwhile logic data hold function is performed until tuning is accomplished.

The data hold step is accomplished specifically by an error signal at terminal 20 of FIG. 9. This prevents interpretation of any data appearing in the data channel

OPERATION, SYNCHRONIZATION

The Sync light will illuminate when the tuning function is complete. Clock synchronization occurs during this phase of operation. Again tens of seconds may be required to accomplish synchronization and depends upon successful readout of the satellite synchronization signal. This signal occurs during a 5 second period once each 30 seconds, at zero seconds and at 30 seconds indicates the sign of the time deviation of the local 1 30 UTC. The receiver ignores data during reception of interfering signals. In areas where interference is frequent it is possible for a number of synchronization periods to pass before successful synchronization occurs. If strong interference is experienced, the Tune light may reappear indicating loss of signal, and the receiver will retune. Synchronization is accomplished in accordance with the flow diagram of FIG. 20 Synchronization is achieved when the Sync and Tune lights 25 and 26 are extinguished. The time display 24 should

> Referring again to FIG. 19, after the satellite is received as represented by a yes output of the satellite received decision box, the tune light is extinguished, the sync light is illuminated and logic data hold is reset. The receiver then proceeds to read data bits until the Maximum Length Sequence (MLS) bit sequence. When detected, data is read until 31 more bits have been received and then the receiver begins to read the 4 bit time characters. The receiver looks for A's or 5's until found, and increments or restarts until detecting either 10 A's or 10 5's denoting either a 0 or 30 second time period. When either sequence is detected, the receiver is in synchronism and the sync light is turned off and the time in the internal registers is set.

> As FIG. 19 shows at the lower left, the receiver continues to read data. The next 10 characters are time data which are written in the memory setting in the days, hours, minutes and seconds of a comparison step where stored time is performed. After the first cycle, the receiver proceeds to increment through 10 characters without an error flag set (FIG. 20 at bottom).

> Next, the receiver continues to read data bits which are the satellite position bits. Satellite position bits are compared with stored satellite position and if a change initialized. If no change, the receiver proceeds to read the receiver position switches which were set on the face of the instrument. If the receiver change counter is

zero, denoting no movement of the receiver, the receiver switch position is read.

The calculate light is illuminated when the position change counter is decremented to zero.

The receiver next reads but does not record the next 5 37 characters of the satellite signal. These characters are unrelated and so are not used. Reading of the next block of 50 bits including the 37 bits causes resetting of the time write function back at FIG. 19.

Referring again to FIG. 20, bottom if in reading time ¹⁰ characters, four successive errors are noted, denoting probable loss of synchronization, the synchronization step is again initiated from the 4 error decision box at the Sync Light On box of FIG. 19.

CALCULATION ERROR CORRECTION

The procesor of FIG. 11 senses calculation errors. In the rare event that such an error occurs the processor will reinitiate the delay calculation after approximately one minute and again check the results for errors. If necessary the calculation will be repeated until a satisfactory result is obtained. Similarily, if incorrect time is displayed after initialization, the error will be detected during data comparison with the satellite time messages. The initialization procedure is automatically restarted to correct the error if is persists for more than 4 satellite time messages.

The clock 1 PPS output normally will be on time or within tens of microseconds of satellite time immediately after initialization is complete. Under some conditions, however, there can be as much as 300 or 400 microseconds time differences at this point in the operation, and additional time should be allowed for corrective actions to take place. The correction circuitry is designed to slew the local clock into agreement with satellite time at the rate of 1 microsecond per second (10 microseconds per second for large discrepancies and in the absence of interference). Thus some 300 or 400 seconds may be required to reduce the error to zero.

From time to time the Sync light may blink indicating an interference condition. The circuitry is arranged to transfer clock operation to the standby mode during the interference period. Clock slew controls and satellite data decoding functions are disabled in the standby 45 mode.

LOCAL TIME SET

UTC time as received from the satellite can be offset in the receiver to yield local time by setting the offset value into the Local Time Switch, Sl, and Daylight Savings Time Switch, D/S of FIG. 12.

Switch settings for switches Sl and D/S of FIG. 12 are determined by considering the local time zone in relation to the UTC reference zone through the Greenwich meridian. For example, Los Angeles is located in standard time zone U (Pacific Standard Time) which is —8 hours from the UTC zone. The operator sets the switches so that the values associated with the "on" switches when added equal the number of hours time difference. In this case the 5th switch with a value of 8 is turned "on" and the others turned "off". Since the hours are to be subtracted, the sign switch must be in

the "off" position. If Daylight Saving Time is in effect the first switch should be "off", and if it is not in effect the switch should be "on". It is necessary to set the Daylight Saving switch to the "off" position if remote operation of this feature is desired.

OPERATION, CALCULATION

The path delay calculation is initiated after the synchronization function is complete. Calculation begins either at 16.5 seconds or at 46.5 seconds depending upon whether synchronization occured on the minute or half minute. The Calc light 30 will illuminate during the approximately 40 seconds time required to perform the path delay computation. Initialization is complete when the calculation period ends.

Calculation of delay path is in accordance with the flow diagram of FIG. 21. Referring now to FIG. 21, whenever the data read function is performed, the delay path calculation is performed. Data is read and whenever the 100 Hz clock appears the receiver advances the stored time in the registers by 0.01 seconds. Next, the receiver checks to see if the second's digit is one, and when it occurs a 1 second pulse is outputted.

The next decision is whether local time switches are set. If so, the offset for local time (zone and daylight savings time) is introduced into the time display values which are then displayed. The IRIG B output is additionally serviced.

Delay path calculation is next commenced, completed and compared with the previous stored value of path delay. If within 100 micro seconds of the previous value, the new value is stored and outputted. If greater then 100 micro seconds, the calculation decision is followed by initiation of the position change counter to start the calculation again.

The actual calculation of path delay involves the solution of the geometric relationships illustrated in FIGS. 1a and 1b employing the calculator of FIG. 11. It is performed as a part of the calculations made by the type 8080 calculator chip of FIG. 1 in carrying out the program of Appendix A.

SUMMARY

One may see that we have invented a satellite responsive time receiver which is capable of scanning for GEOS Satellite Signals, synchronizing with such signals, tracking the signal, automatically computing the signal path delay given the receiver position coordinates, compensating for the delay and displaying the corrected time. The receiver is further capable of introducing a correction for local and daylight time and for maintaining local internal clock time display during periods of loss of satellite signal. The receiver further provides an external 1 MHz clock signal and further compares satellite 1 pulse per second signals with similar local signals and displays any deviation. Thus a complete virtually automatic satellite clock is disclosed.

The above described embodiments of this invention are merely descriptive of its principles and are not to be considered limiting. The scope of this invention instead shall be determined from the scope of the following claims, including their equivalents.

	7					
	:PROGRAM ADDRESSES					
66F 0	HLIST	EQU	66F0H			
6891	IRIGD	EQU	25600+1169			
6892	LTIME \	EQU	25600+1170			
6810	TIME	EQU	25600+1040			
6817	SPDS	EQU	25600+1047			
6824	RPDS	EOU	25600+1060			
6865	DATA	EQU	25600+1125			

```
:PROGRAM ADDRESSES
                        EΆ
                                  25600+1070
                RPDS1
PRSE
                                  25600+1034
                CALCO
                         FOU
680B
                         EGU
                                  25600+1100
6840
                CNTR
                                  25600+1110
                        EQU
                FLAG
6856
                                  26624+1149
                CALCE
                         EQU
SCZD
                         EQU
                                  26624+1150
                CALC1
607E
                                  26624+1159
                         EQU
                RECAL
6087
                         EQU
                                  26624+1160
                CALCS
60.88
                         EQU
                                  26624+2048
                INPUT
7000
                                  26624+2052
                CALC
                         EOU
7004
                DISP
                         EQU
                                  26624+2053
7005
                                  26624+2055
                         EQU
7007
                DNEHZ
                                  26624+2056
                ЭH
                         EGU
7003
                LSta
                         EDU
                                  26624+2064
7010
                                  24576
                         DRG
60000
                                  SP,25600+1279
                START:
                         LXI
6000 31FF68
                                  H.FLAG+4
                         EXI
6003 215868
                         XRA
                                  Ã
6006 AF
                         VOM
                                  M. A
6007 77
6008 23
6009 77
                                  H
                         INX
                                  M.A
                         MOV
                                  H.DATA+10
                         LXI
600A 216F68
                                  M. A
                         mnv
600D 77
                                  н
A00E 23
                         INX
                         MOV
                                  M.A
600F 77
                                  B.RECAL
                         LXI
5010 01876C
                                  Ĥ
                         INP
5013 30
                         STAX
                                  В
5014 02
                         CALL
                                  WAIT
                DITTD:
5015 CD0562
                                  H. INPUT
                         LXI
5018 210070
                                  M.A
                         MOV
 501B 7E
                                  10000000B ;SERIAL STORAGE OF IMPUT BITS
                         ANI
 3010 E680
                                  F, A
                         MDV
501E 47
                                  H, DATA+10
                         LXI
601F 216F68
                         MOV
                                  A,M
6022 7E
6023 E67F
                         IMA
                                  127
6025 B0
                         DRA
                                  В
6026 1F
6027 77
                         RAR
                                  M.A
                         MOV
                         INX
                                  H
6028 23
                         MOV
                                  A, M
6029 7E
                         RAR
602A 1F
                                  D,0111010110010001B
602B 119175
                         LXI
                                            IMES SYNC TEST
                         CMP
602E BB
                                  Ε
                                  M, A
602F
     77
                         MDV
6030 C21560
                         JNZ
                                  DITTO
6033 2B
                         DCX
                                  Η
                                  A.M
6034 7E
                         MOV
6035 BA
                         CMP
                                  Tı
6036 021560
                         JNZ
                                  DITTO
                                  H, CMTR+1
                         EXI
6039 214D68
6030 360A
                         MULT
                                  M, 10
                                            ISKIP 31 BITS BETWEEN MLS SYNC
                         INX
603E 23
                         MVI
                                  M.31
                                            AND BCD CHARACTER
603F 361F
6041 CD4C60
                         CALL
                                  MORE
6044 C35D60
                         4riC
                                  SYNC
                FRAME:
                         EXI
                                  H+CNTR+2
6047 214E68
604A 362E
                         MVI
                                  M•46
604C CD0562
                MORE:
                         CALL
                                  WAIT
                                  H+CNTR+2
                         EXI
604F 214E68
6052 35
                         DOR
                                  MORE
-6053 C24C60
                         SMC
                                  LBAD4
6056 CDDB61
                         CALL
6059 09
                         RET
                AGAIN:
                         CALL
                                  FRAME
605A CD4760
                                  A.10100000B
                SYNC:
605D 3EA0
                         MVI
                         LXI
                                  H, DATA
605F 216568
                         CMP
                                  M
6062 BE
6063 CA6F60
                         JZ
                                  60
6066 3E50
                         MVI
                                  A. 01010000B
                         CMP
6068 BE
6069 CA6F60
                         JΖ
                                  60
6060 C31560
                         SIMP
                                  DITTO
```

Ì

```
H+CNTR+1
               GD:
                        LXI
606F 214D68
                        DOR
6072 35
                         JINZ
                                 AGAIN
6073 C25A60
                                 H.FLAG+5 ; CODE SYNC ACHIEVED IF HERE
                        LXI
6076 215B68
                                 M.1 ;SET CODE SYNC FLAG
H.TIME ;SET TIME TO 4.58 SECONDS TO
M.01011000B ;ALLOW FOR CODE SYNC
6079 3601
                        MVI
607B 211068
607E 3658
                        LXI.
                        MVI
6080 23
                        INX
                                           SAND RECEIVER DELAY
                        MVI
                                 17,4
6081 3604
                                 H.CHTR+3 FRESET ERROR COUNTER
6083 214F68
                        LXI
                                 Fi
6086 AF
6087 77
                         XRA
                         MDV
                                  M,A
                                            SET POSITION CHANGE COUNTER
6088 23 .
                         INX
                                  H
6089 30
                         INR
                                  A
608A 77
                         MDV
                                  M.A
                         LXI
                                  H,FLAG
                                           SET WRITE FLAG
608B 215668
608E 77
                         MOV
                                  M,A
608F 211168
                                  H, TIME+1 ; INITIALIZE TIME READ
               TOY:
                         LXI
                                  CNTR
                         SHLD
6092 224068
                                  H.FLAG+1 | SET HL FLAG
                         LXI
6095 215768
                         MVI
                                  M . 1
6098 3601
609A 23
                         INX
                                  н
                                          RESET ERROR FLAG
                                  M = 0
609B 3600
                         MVI
                                  FRAME
               RPT:
609D CD4760
                         CALL
                                  CNTR
60A0 2A4C68
                         LHLD
60A3 7D
                         MOV
                                  Ĥ•L
                                  TIME+6 AND OFFH
                         CPI
60A4 FE16
                                 HILD ;TEST FOR 10 CHARACTERS
H,FLAG+2 ;TEST FOR ERROR
                         JC
6086 DA0C61
6089 215868
608C 3E80
                         LXI
                        MVI
                                 A,128
                         ANA
                                 М
60AE A6
                         CPI
                                  128
60AF FE80
                                  SAT
60B1 CAC160
                         .17
                         XRA
                                  Ĥ
60B4 AF
                         INR
60B5 3C
                         ANA
                                  М
60B6 A6
60B7 FE01
                         CPI
                                  ERR
                         JZ
60%9 CA6961
                                  H. CHTR+3 FRESET ERROR COUNTER
                         LXI
60BC 214F68
60BF AF
                         XRA
                         MOV
                                  M. A
6000 77
                                          TEST FOR 13 CHARACTERS READ
                                  CNTR
6001 284068
               SAT:
                         LHLD
60C4 7D
                         MOV
                                  A,L
                                  SPDS+13 AND OFFH
                         CPI
6005 FE24
6007 DA7661
600A 010870
                                  READ
                         JO
                         LXI
                                  B. Sw
                                  D, CNTR+4
                         LXI
60CD 115068
                                  RPDS+8 AND OFFH : TEST FOR 8 SWITCHES READ
                         CPI
                SBT:
60D0 FE2C
                         JNZ
                                  SWCH
60D2 C2B661
                                  H,SPDS
                                           TEST SATELLITE O DATA
                         LXI
60D5 211768
                ZEROT:
60D8 7D
                         MOV
                                  H.L
                                  SPOS+12 AND OFFH
60D9 FE23
                         CPI
                         JZ
                                  CALCS
60DB CAE760
                         XRA
                                  Ē
60DE AF
ADDE BE
                         CMP
                         JMZ
                                  CALFL
60E0 CSEB60
                         INX
60E3 23
                                  ZERDT
60E4 C3D860
                         JMP
               CALCS:
                         XCH5
60E7 EB
60E8 3602
                         MVI
                         XCH6
60EA EB
                                  H,FLAG+4 ;TEST CALCULATOR FLAG FOR 0
60EB 215A68
60EE AF
60EF BE
               CALFL:
                         LXI
                         XRA
                                  11
                         CMP
                                  POSCT
                         JZ
60F0 CAC961
                                  H, CNTR+5 ; INITIALIZE FRAME COUNTER
               FRMCT:
                         LXI
60F3 215168
60F6 3624
                                  M:36
                         MVI
                                  FRAME
60F8 CD4760
               FRM:
                         CALL
60FB 215168
60FE 35
                         LXI
                                  H, CNTR+5
                         TICK
60FF AF
                         XRA
                                  Ĥ
                         CMP
                                  M
6100 BE
                                  FRM
                                            ;37 FRAME TEST
                         JNZ
6101 C2F860
                                            FRESET WRITE FLAG
                         LXI
                                  H.FLAG
6104 215668
                         MVI
                                  M, 0
6107 3600
6109 C38F60
                         JMP
                                  THY
```

```
B.FLAG+1 ; TEST FOR 0
6100 015768
                HILD:
                         LXI
610F 116568
                         LXI
                                  II, IIATA
                         LDAX
                                  В
6112 0A
                         CPI
                                  Ü
6113 FE00
6115 CR5B61
                         JZ
                                  LD
6118 AF
                         XRA
                                  Ĥ
                                             SET HILD = 0
                                            FINCREMENT TIME ADDRESS
                         STAX
                                  В
6119 02
                                  н
611A 23
                         INX
                         SHLD
                                  CNTR
611B 224C68
611E 2B
                         DCX
                         LDAX
                                  D
611F 1A
                                  C,A
6120 4F
                         MOV
                         ANI
                                  240
6121 E6F0
                                  D
                         STAX
6123 12
                                            COMPARE DATA WITH MEMORY
6124 3E0F
                         IVM
                                  A+ 15
6126 A6
6127 EB
                TEST:
                         ANA
                         XCH6
6128 B6
                         Π₽<del>A</del>
                                  11
6129 47
                         MOV
                                  B.A
                         MOV
                                  A.C
                                            IDIGIT ERROR CHECK
612A 79
                         INA
                                  3
615B E608
612D FE08
                         CPI
                                  RPT1
                         JZ
612F CA5161
6132 78
                         MOV
                                  A, B
6133 EB
                         XCH6
                                  m
                         CMÉ
6134 BE
6135 EB
                         XCH6
                                  H.FLAG+2
6136 215868
                         LXI
                                  WRITE
6139 CB4061
                         JZ
                         MVI
                                  A, 1
                                            SET ERROR FLAG
613C 3E01
613E B6
                         DRA
                                  M
                         MOV
                                  M.A
613F 77
6140 2B
                WRITE:
                         DCX
                                  Н
6141 2B
                         DCX
                                  Н
6142 AF
                         XRA
                                  A
                                            TEST WRITE FLAG FOR 0
6143 BE
                         CMP
                                  M
                                            GET NEXT TIME CHARACTER
                                  RPT
6144 CA9D60
                         JZ
6147 EB
                         XCH6
6148 70
                         MDV
                                  M. B
                                            JURITE NEW TIME IN RAM CLOCK
                                  H, CMTR+3 ; RESET ERROR COUNT
6149 214F68
                         LXI
614C AF
                         XRA
                                  A
614D 77
                         M\Pi^{\prime\prime}
                                  M.A
614E C39D60
                         JMP
                                  RPT
               RPT1:
                                  H,FLAG+2
6151 215868
                         LXI
                                  A, 128
                         MVI
6154 3E80
6156 B6
                         DRA
                                  m
6157 77
                         MDV
                                  m, A
6158 C39D60
                         JMP
                                  RPT
615B 3C
                LD:
                         INR
                                  Ħ
                                            SET HILD=1
6150 02
                         STAX
                                  В
                         LDAX
615D 1A
                                  D
615E 4F
                         MOV
                                  0 · A
615F 1F
                         RAP
6160 1F
                         RAP
6161 1F
                         RAR
                         RAR
6162 1F
6163 12
6164 3EF0
                         STAX
                                  T)
                                  A,11110000B
                         MVI
6166 032661
                         JMP
                                  TEST
                ERP:
                                  H+CNTR+3 FINCR ERROR COUNTER AND TEST
6169 214F68
                         LXI
616C 34
                         INP
                                  M
                                            FOR FOUR ERRORS.
616D 3E04
                         MVI
                                  A • 4
616F BE
                         CMP
                                  M
6170 CA0060
                                  START
                         37
6173 030160
                         JMP
                                  SAT
               READ:
                                  D, DATA
                                            READ COMPARE AND WRITE 13
6176 116568
                         LXI
6179 1A
                         LDAX
                                            SATELLITE POSITION CHARACTERS
                                  TI
617A E608
                         ANI
                                  8
617C FE08
617E CA9961
                         CPI
                                  8
                                            #DIGIT ERROR CHECK
                                  NER
                         IJΖ
6181 1A
                         LDAX
                                  Ľ
6182 E6F0
                         ĤΝΙ
                                  240
6184 OF
                         PRC
6185 OF
                         RRC
6186 OF
                         RRC
6187 OF
                         RRC
```

ļ

```
MOV
6188 47
                                 B, A
6189 215668
                        LXI
                                 H,FLAG
6180 AF
                        XRA
                                 н
613D BE
                        CMP
                                 m
                                 CHTR
618E 2A4C68
                        LHLD
6191 C2B261
                        JINZ
                                 SATUR
6194 78
                        MD9
                                 A,B
6195 BE
                                           FITEST NEW CHARACTER = DLD
                        CMP
                                 М
                         JHZ
                                 CPDS1
6196 C2R361
6199 23 .
               NFR:
                         INX
619A 224C68
                        SHLD
                                 CHTR
619D CD4760
                        CALL
                                 FRAME
61A0 C3C160
                        JMP
                                 SAT
               CPDS1:
                        XCH<sub>6</sub>
61A3 EB
6184 215068
                        LXI
                                 H, CNTR+4 ; INITIALIZE POSITION CHANGE
                                 M,2
61A7 3602
                        MVI
                                           ; COUNTER
                                 H, FLAG+4
6189 215868
                        LXI
61AC AF
                        XRA
                                 Ĥ
61AD BE
                        CMP
                                 m
                                           THEST CALCULATOR ON FLAG FOR 0
61AE EB
                        XCHG
61RF C29961
                        SML
                                 MFR
61B2 70
                                           FLOAD NEW SATELLITE POSITION
               SATUR:
                        MOV
                                 M.B
                                           JINTO MEMORY
61B3 C39961
                        JMP
                                 MER
61B6 0A
               SWCH:
                        LDAX
                                 В
61B7 BE
                        CMP
                                           FIEST SWITCH VS PREVIOUS VALUE
                                 M
                                 CPBS
61B8 C2C161
                        JHZ
               INC:
61BB 23
                        INX
                                 Ħ
61BC 03
                        INX
                                 B
61BD 7D
                        MDV
                                 A:L
61BE C3D060
                        JMP
                                 SWT
               CPBS:
6101 77
                        MOV
                                 M. A
61C2 EB
                        XCH6
6103 3602
                        MVI
                                 M, 2
                                           SET POSITION CHANGE CHTR = 2
6105 EB
                        XCH6
                        HME
                                 INC
6106 C3BB61
               PDSCT:
                        XCHG
6109 EB
61CA BE
                        CMP
                                 M
                                 FRMCT
610B CAF360
                        JZ
                        DOR
                                           TEST POSITION CHANGE CHT FOR 0
61CE 35
61CF BE
                                 M
                                           FAFTER PREVIOUS CHANGE
                        CMP
                                 m
61D0 C2F360
                        JNZ
                                 FRMCT
61D3 215968 ·
                                 H+FLAG+3
                        LXI
                                           SSET POSITION CHANGE FLAG
6106 3601
                        MUT
                                 M • 1
61D8 C3F360
                        JMP
                                 FRMCT
                                           ; INITIALIZE FOR SERIAL SHIFT OF
61DB 216568
               LOAD4:
                        EXI
                                 H. DATA
                                           34 INPUT DATA BITS
61DE 3608
                        MVI
                                 M, 8
61E0 2B
                        DCX
                        MVI
                                 M: 0
61E1 3600
               LNXT:
                                 WAIT
61E3 CD0562
                        CALL
                        LXI
                                 D. INPUT
61E6 110070
                                 D
61E9 1A
                        LDAX
61EA E608
                        ANI
                                 8
61EC FE08
                        CPI
                                 8
                                           FBIT ERROR TEST
                                 H, DATA-1
61EE 216468
                        LXT
                                 RITI
61F1 C2F561
                        JINZ
61F4 77
                        MOV
                                 M. A
61F5 1A
               BITL:
                        LDAX
                                 D
                                 128
                        ANI
61F6 E680
61F8 23
                        INX
                                 H
61F9 B6
                        DRA
                                 m
61FA 1F
                        RAR
61FB 77
                        MDV
                                 M, A
                                           TEST FOR CARRY RESULTING FROM
                        JINC
                                 LNXT
61FC D2E361
                                           SHIFT OF INITIAL 1 IN BIT 4
     07
                        RLC
61FF
6500 SB
                        DCX
6201 B6
                        DRA
                                 m
                                 н
6202 23
                        INX
                                 M.A
6203 77
                        MOV
6204 69
                        RET
6205 210370
               WAIT:
                                 H, INPUT+3
                        LXI
                                           FOR 100HZ
                        MOV
                                 A,M
6208 7E
6209 17
                        PAL
620A 17
                        RAL
                                           JUMP TO WAIT IF 100HZ ABSENT
620B D20562
                        JINC
                                 WAIT
                                           FRESET 100HZ
620E 77
                        MOV
                                 M.A
620F 215968
                        LXI
                                 H+FLAG+3
```

ļ

```
6212 AF
                       XRA
                                Ĥ
                       CMP
                                         FITEST POSITION CHANGE FLAG
6213 BE
                               М
                       JNZ
6214 021963
                                CALIN
6217 23
                       INX
                                H
6218 BE
                       CMP
                                          TTEST CALCULATOR ON FLAG
                                m
6219 CA9864
                       JΖ
                                COUNT
621C 210070
621F 3E10
                               H, INPUT
                       LXI
                       MVI
                                A+00010000B
6221 A6
                       HNH
6222 FE00
                                          TTEST CALCULATOR READY
                      CPI
6224 CR9864
                       JZ
                                COUNT
6227 015F68
                      EXI
                               B.FLAG+9
622A 0A
                       LDAX
                               B
622B FE00
                       CPI
                                0
                                          TTEST FOR CALCULATOR READ
                                KEYST
622D C25163
                       JHZ
6230 3E20
                       MVI
                                A+32
                       ЙÄÄ
                              . m
6232 A6
                                          FITEST CALCULATOR DUTPUT READY
6233 FE 0.0
                       CPI
                                Û
6235 CA9864
                       JZ
                                COUNT
                               B.FLAG+4
                       LXI
6238 015A68
623B 0A
                       LDAX
                                F
6230 FE02
                       CPI
                               2
                                         STEST FOR FIRST CALCULATION
                               READ2
H.CALC1
653E C59065
                       CHIL
6241 217E6C
6244 110470
                       LXI
                               D.CALC
              READC: LXI
                               B, CHLCL
6247 017D6C
                       LXI
6248 3E03
6240 02
                       MVI
                                A,3
                               F
                                          FREAD 3X8 BITS CALCULATOR DATA
               WORD:
                       STAX
                                          FTEST IF 24 BITS PEAD
624D FE00
                       CPI
                                Ĥ
624F C26462
                        SHU
                                BITLD
6252 015868
                               B.FLHG+4
                       LXI
6255 0A
                       LDAX
                               В
6256 FE01
                        CPI
                                          TEST IF 2ND CALCULATION READ
                                CALCT
                      . JZ
6258 CA9662
                               B,FLAG+9
625B 015F68
               READ1: LXI
625E AF
625F 3C
                       XRA
                                H
                        INR
                                Ĥ
6260 02
                        STAX
                                COUNT
                        JMP
6261 C39864
6264 010070
6267 3601
6269 AF
                                B. INPUT : LOAD 8 CALCULATOR BITS
               BITLD: LXI
                       MVI
                                M - 1
                       XRA
               BITED: MOV
                                A,M
626A 7E
626B 17
                       RAL
626C DA7C62
                       JC
                                DUTKH
                       LDAX
626F 0A
                                В
6270 1F
6271 7E
                       RAR
                       MOV
                                A.M
6272 17
                       RAL
                       MOV
                                m. A
6273 77
6274 3E40
                       MVI
                                H+64
6276 12
                       STAX
                                Tı
6277 AF
                       XRA
                                A
                       STAX .
6278 12
                                Tı
6279 036862
                        JMF
                                RITED
6270 AF
              MXTOD: XRA
627D 0A
627E 1F
627F 7E
                       LDAX
                                ĸ
                       RAR
                       MDV
                                H.M
                       RAL
6280 17
6281 77
6282 3E40
                       MOV
                                M.A
                       MVI
                                A: 64
6284 12
                       STAX
                                Ti
6285 AF
                       XRA
                                Ĥ
                       STAX
6286 12
                                n
                                          FLOAD NEXT 8 BITS
6287 23
                       INX
6288 017D6C
                                B.CALCL
                       LXI
628B 0A
                       LDAX
                                P
6280 3D
                       DOR
                                MORD
628D 034062
                       JMP
               READ2: LXI
                               H+CALC2
6290 21886C
6293 034462
                       JMP
                              PEADC
                            II.RECAL
H.CALC2
6296 11876C
6299 21986C
629C 7E
               CALCT: LXI
                       LXI
                       MOV
                              Ĥ،M
```

```
ANI
                                 240
629D E6F0
                                           :TEST IF MSD=0
                        CPI
                                 Ũ
629F FE00
                                 NOGO
                        JMZ
62A1 C2F862
6284 3E84
                        MVI
                                 H . 4
                                           STEST IF MSD-1 < 4
                        CMP
                                 M
62A6 BE
                                 NOGO
                        JC
62A7 IAF862
                        XRA
62AA AF
                        CMP
                                 M
62AB BE
628C C28862
                        JNZ
                                 DIFFT
                        INX
                                 Н
62B0 7E
                        MOY
                                 H, M
                                 240
62B1 E6F0
                        ANI
                        CPI
                                           STEST IF DELAY <1 MS
62B3 FE00
                                  ſι
6285 CAF862
                                 NDGD
                        JZ
                                 H+CALC1
               DIFFT:
62B8 217E6C
                        LXI
                        MVI
                                 C,2
65BB 0E05
                        XRA
                                 A
62BD AF
                                           TEST IF DELAY DIFFERENCE <100 US
62BE BE
               NXTDG:
                        CMP
                                 M
                                 HDGD1
                        JNZ
62BF C20363
6505 53
                        INX
                                 н
                        DOR
65C3 OD
                                            TEST IF 4 DIGITS COMPARED
                                 \mathbf{C}
                        C:MP
62C4 B9
62C5 C2BE62
                         JHZ
                                 NXTDG
                        XCH6
62C8 EB
                                            TRANSFER 24 BITS TO DELAY COUNTER
                                 A
               DXFER:
                        XPA
6209 AF
                        MOV
                                 M.A
62CA 77
                                 ID-CALC
                        LXI
62CB 110470
                                 H+CALC2
                        LXI
620E 219860
                                 A,128
                        MVI
62D1 3E80
                                 D
                        STAX
6203 12
62114 AF
                        XRA
                                 Ĥ
                                  Ľ
                        STAX
6205 12
62D6 7D
               NXTS:
                        MOV
                                 A.L
                                  CALC2+3 AND OFFH
                        CPI
62D7 FE8B
                        JZ
                                 DDATA
62D9 CA0B63
62DC 0608
62DE 7E
                        MVI
                                  B. 8
                        MOV
                                  A.M
                                  C.A
               NXTB:
                        MDV
62DF 4F
                                  H
                        XRA
62E0 AF
                                            TEST IF 8 BITS TRANSFERRED
                        CMP
                                  F
62E1 B9
                                  PNXT8
                         JZ
62E2 CAF462
                        MOV
                                  A.C
62E5 79
                                  128
                        IMA
62E6 E680
                         STAX
                                  I
62E8 12
                                  64
                        DR I
62E9 F640
                         STAX
                                  D
62EB 12
                         XRA
                                  Ĥ
62EC AF
                         STAX
                                  Τı
62ED 12
                         MOV
                                  A.C
62EE 79
     17
                         PAI
62EF
                         DOR
                                  В
62F0 05
                                  NXTB
                         JMP
62F1 C3DF62
                RNXT8:
                         INX
                                  н
62F4 23
                         JMP
                                  BTXB
62F5 C3D662
                NDGD:
                         XCH6
62F8 EB
                                            INITIALIZE DELAY CALCULATION
62F9 3601
                INITC:
                         IVM
                                  M • 1
                         LXI
                                  H+CNTR+4
62FB 215068
                         MVI
                                  M,2
62FE 3602
                                  READ1
6300 C35B62
                         .IMP
6303 EB
                NDGD1:
                         XCHG
                                            TEST FOR REPEAT CALCULATION
                         CMP
6304 BE
6305 CAF962
                                  INITC
                         JZ
6308 030962
                         JIMP
                                  DIXFER
630B 21886C
                DDATA:
                        LXI
                                  H, CALC2
630E 110A68
                         LXI
                                  II, CALCO
                                  C, CALC2+3 AND OFFH
                         MVT
6311 0E8B
                                            FORM DELAY DATA INTO 4BIT WORDS
                         CALL
                                  AGN3
6313 CD2B63
6316 C35B62
                         .IMP
                                  READ1
                                            RESET POSITION CHANGE FLAG
6319 77
                CALIN:
                         MOV
                                  M. A
                         INX
                                  Н
631A 23
                                            SET CALCULATOR IN FLAG
                                  м, З
631B 3603
                         MVI
                         LXI
                                  H+RPDS
631D 212468
                                  D. PPOSI
                         LXI
6320 112E68
                                  C+RPDS+8 AND OFFH
6323 0E20
                         MVI
```

6325 CD2B63 6328 C34063 632B 3EF0 632D A6 632E 0F	AGN3:	CALL JMP MVI ANA RRC	AGN3 INITK A:240 M	FALIGN CALCULATOR DATA
632F 0F 6330 0F 6331 0F 6332 12 6333 13		RRC RRC RRC STAX INX	I: I:	
6334 3E0F 6336 A6 6337 12 6338 23		MVI ANA STAX INX	я. 15 м п н	
6339 13 633A 79 633B BD 633C C22B63		INX MOV CMP JHZ	D A+C L A5N3	
633F C9 6340 21D863 6343 226868 6346 215E68 6349 3600	INITK:	RET LXI SHLD LXI MVI	H•KSEQ IATA+3 H•FLAG+8 M•Ú	; INITIALIZE KEY SEQUENCE
634B 23 634C 3601 634E C39864 6351 0B	KEYST:	INX MVI JMP DCX	H M+1 CDUNT B	KEY COUNT FLAG
6352 111768 6355 286868 6358 AF 6359 BE 6358 C89463		LXI LHLD XRA CMP JZ	Deletik Data+3 Deletik	TEST FOR LAST KEY
635D 7E 635E FEFF 6360 C27363 6363 OA		MDV CPI JNZ LIIAX	H M 255 KSET B	TEST FOR KEY JUMP
6364 FE00 6366 CA8663 6369 FE01 636B CA8C63	•	CPI JZ CPI JZ		SKIP TO KEY 1
636E RF 636F 02 6370 217964 6373 7E 6374 FE40	KSET:	XRA STAX LXI MOV CPI	A B H,KSEQ+10 A,M 64	61 ;SKIP TO KEY 161
6376 D2A163 6379 23 637A 226868 637D 210470	SETC:	JNC INX SHLD LXI	CDATA H IATA+3 H•CALC 63	SET CALCULATOR KEY
6380 E63F 6382 77 6383 C39864 6386 3C 6387 02	MSET:	ANI MDV JMP INR STAX ·	M•A COUNT A	FADV AND STORE KEY JUMP COUNTER
6388 23 6389 037363 6380 30 6380 02 6386 210963	SET1:	INX JMP INP STAX EXI	H KSET A B	; ADV AND STORE KEY JUMP COUNTER ; SET KEY SEQUENCE TO 1
6391 037363 6394 03 6395 AF 6396 02	LASTK:	JMP INX XRA STAX	KSET B A	RESET CALCULATOR READ FLAG
6397 015A68 639A 0A 639B 3D 639C 02		EXI EDAX DCR STAX	B∙FLAG+4 B A B	
639D AF 639E C37963 63A1 FE80 63A3 DARB63	CDATA:	XRA JMP CPI JC CPI	A SETC 128 XMTR 192	·
63A6 FEC0 63A8 DAAE63 63A8 D2CA63 63AE E63F	CONVT:	UC UNC ANI	516N 516N 63	

63B0 5F		MDV	E.A	
63B1 1A		LDAX	I)	
63B2 11F066 63B5 B3		LXI	D, NL IS	T
63B6 5F		DRA MDV	E	
63B7 1A		LDAX	E,A D	
63B8 C37963		JMP	SETC	
63BB OA	XMTR:	LIMX	F	
63BC FE00		CPI	0	
63BE CAC663 63C1 7E		JZ	INCR	•
6302 23		MOV XNI	A•M H	
6303 037963	•	JMP	SETC	
6306 23	INCR:	INX	Н	
6307 037363		JMP	KSET	
630A E63F	216H:	ANI	63	
63CC 5F 63CD 1A		MDV LDAX	E•A D	•
63CE FE08		CPI	8 1,	
63D0 DA7963		JC	SETC	
63D3 3E24		MVI	A+36	
63D5 C37963		JMF	SETC	
63D8 3A 63D9 07	KSEQ:	DB DB	59	;F
63DA 97		DB	7 151	∮C ∮SLGH
63DB 98		DB	152	SLGT
6310 99		DB	153	; SLGU
63DD 06		DB	6	; DP
63DE 9A 63DF 9B		DH	154	SLGTTH
63E0 28		DB DB	155 40	SLGHTH
63E1 45		DB	69 69	FENTER FO XLGH
63E2 AE		DB	174	RLGH
63E3 55		DB	85	37 XLGT
63E4 AF		I)B	175	RLGT
63E5 53 63E6 B0		DB DB	83 •37	55 XLGU
63E7 06		DB DB	176 6	RLGU DP
63E8 52		DB	82	34 XLGTTH
63E9 B1		DB	177	RLGTTH
63ER 54		DR	84	;6 XLGHTH
63EB B2 63EC OF		I)B	178	RLGHTH
63ED F3		DB DB	15 243	IX NO OP
63EE 08		DB	8	; -
63EF 36		DВ	54	; cos
63F0 9D		DB	157	SLTU
63F1 06 63F2 9E		DB Total	6	; DP
63F3 9F		DB DB	158 159	;SLTTTH ;SLTHTH
63F4 36		DB	54	; CBS
63F5 18		DB:	24	;x
63F6 44 63F7 B4		DB	68	3 XLTT
63F7 B4 63F8 55		DB DB	180	FRLTT
63F9 B5		DB	85 181	;7 XLTU ;RLTU
63FA 06		DB	6	; DP
63FB 56		DB	86	38 XLTTTH
63FC B6 63FD 53		DB .	182	FRLTTTH
63FE B7 *		DB DB	83	35 XLTHTH
63FF OF		DB	183 15	;RLTHTH ;X ND DP
6400 F8	•	DB	248	FRLT SIGN
6401 37		DB	55	TAN
6402 06 6403 17		DB	6	; DP
6404 17		DB DB	23 23	;9
6405 04		DB	23 4	;9 ;3
6406 03		DB	3	;2
6407 04		DB	4	;3
6409 02 6409 04	`	DB	2	; 1
640A 12		DB DB	4	;3
640B 03		DB DB	18 3	;4 ;2
		~~	e e	, <u>c</u>

	T: T:	34	; MS
6400 22	DB		
640D 04	I)B	4	;3
	I/B	24	;×
-		58	; F
640F 3A	DB		
6410 37	IIB	55	; TAN
	DR	34	;MS
			; 1
6412 02	DB	2	
6413 36	DR	54 1	; CDS
6414 18	IB	24	;×
	· IIB	157	;SLTU
6415 9D			
6416 06	DE	6	; IP
6417 9E	DВ	158	;SLTTTH
6418 9F	DB	159	;SLTHTH
- · · -	DB	220	SLTSIGN
6419 DC			
-641A 35	Iв	53	HIZE
641B 21	DB	33	: MR
6410 02	IΒ	2	; 1
	DB	53	;SIN
641D 35			
641E 18	DE	24	; X
641F 09	DB	9	;+
-	IB	68	;3 XLTT
6420 44		180	RLTT
6421 B4	II.		
6422 55	DR	85	;7 XLTU
6423 B5	DB	181	;RLTU
	IIB.	6	: DP
6424 06			S XLTTTH
6425 56	DB	86	
6426 B6	IJВ	182	; RLTTH
	1)B	83	;5 XLTHTH
6427 53	DB	133	FRLTHTH
6428 B7			
6429 37	DB	55	; TAN
642A 28	IιΒ	40	; EN
	DB	24	;×
642B 18		33	; MR
6420 21	DB		
642D 04	DR	4	;3
642E 18	DB	24	;×
	DB	34	3MS
642F 22 -			
6430 02	DB	2	; 1
6431 21	DВ	33	; MR
•	DB	4	;3
6432 04			įχ
6433 18	DB	24	
6434 02	DB	2	5 1
6435 09	IВ	9	; +
		33	; MR
6436 21	DB		
6437 02	DВ	5	; 1
6439 02	DB	2	3 1
	IB	9	; +
-		25	FDIVIDE
643A 19	ĎВ		
643B 34	DВ	52	SQUARE ROOT
643C 14	1019	20	;6
	DB	4	;3
643D 04		21	\$ 7
643E 15	ГВ		
643F 16	DB	55	;8
6440 06	DB	6	; I/P
6441 03	DB	. 3	;2
	DH	· 5	រ ប
6442 05			
6443 14	DB	20	; 6
6444 12	DR	13	; 4
6445 18	DВ	24	;×
	DB	34	: MS
6446 22			
6447 02	. BB	2	3.1
6448 18	DB	24	3 X
-	DB	18	; 4
6449 12		3	;2
644A 03	DB		
644B 02	DB	5	; 1
644C 12	DR	13	; 4
	DB	4	;3
6441 04		-	
644E - 06	· · · · · · · · · · · · · · · · · · ·	6	
.644F .12	DR · ·	18	; 4
	ГIB	19	;5
6450 13		ร์	;2
6451 03	DB		
6452 18	DB	24 -	; X
6453 - 93	DB	3	;2
- 6454 -18	TITE		. *X
	70.7r	36	CHS
-6455 -24 -	DR		
6456 21	DB	33	; MR

```
- -6457 -02
                     IIB .
                           2 . . . . . . . . . . . . . 1
  -6458 -28 ·
                     .6459.18......BB......24.......X
  IB 20 16
  -645E -14 -
  645F 05
                      · 21
5
19
3
2
5
5
  6460 15
                     DB
                                  ;7
  6461 05
                     DB
                                  ;0
  6462 13
                     DB
                                  :5
  6463 03
                     TIR
  6464 - 02
                    DК
                                  ; 1
  6465 - 09
                    DΒ
  6466 34 ..... SQUARE - ROOT
 ·····3····3
 -6468 - 93
 -6469 17
                       23 ;9
23 ;9
                    DR
  646A 17
                    DB
  646B-15
                    DB · · · · · · 21 · · · · · · ; 7
                    DR . . . . 23 ; 9
· 6460 -17
-646G-17 DB 23 ;9
-646B-03 DB 3 ;2
-646E-13 DB 19 ;5
-646F-19 DB 25 ;DIVIDE
-6470-R1 DB 161 ;SRADH
-6471-R2 DB 162 ;SRADT
-6472-R3 DB 163 ;SRADU
-6473-E0 DB 224 ;SRAD SIGN
-6474-09 DB 9 ;+
-6475-FF DB 255 ;KEY JUMP
-6476-22 DB 334 ;MS
- 6476 -22
         ····IB·····34····.$MS
 -6477 -03
9 ;+
 647B 09
                    DB
 6470 03
                    DF
 647D 16
                   ПB
 647E - 05
                    647F - 05
          --6480-05
                   DR 5 ;0
DB 5 ;0
 6481 05
 6482 - 08 - - - - - -
··PB······8····-*-
-648G-8B-----
                       139
140
                   DE
                                 FDELAY 10K
 648D 8C
                   ΠB
                                 FIELRY 1K
                        141
142 -
 -648E 8D
                    DK
                                FIELAY H
 648F 8E
                    DE
                                 DELAY T
 6490 8F .... DR .... 143 .... DELAY U
         -6491 -09
                                 JEND DIFFERENCE CALCULATION
 6492.00
                    ΙB
                          Ω
 6493 21
                    DB
                          33
                                 ; MR
 6494 - 02
                    TiB
                          2
                                 : 1
                                 JEND DELAY READOUT
 6496 - 00
                    DR
                           Û
 6497 00
                    DH
                           Û
                                 ; END
 6498 211068
             COUNT:
                          H, TIME
                    LXI
                    LXI
 649B 01FA66
                          B, TLIST
 649E 0A
649F -FE00
             CNTCY:
                   LDAX
                                  ;LOAD COUNTER LIMIT-1
                          Н
                    CPI
                           Û
                                  FIEST FOR LAST COUNTER
 6481 CAC664 · ·
                   JŽ
                          TXFER
 64A4 BE
                   CMP
                          М
                                  TEST FOR COUNTER LIMIT
 6485 D2BF64 -
                    JINC
                          CTADV
 6488 3E99 · · · ·
                    MVI
                          A.10011001B
 64RA BE
                    CMP
 64AB C2B864
                          CTRES
                    JNZ
```

4.654

```
MOV
648E 7D
                                   A,L
64AF FE10
                          CPI
                                   TIME AND OFFH
64B1 C2B864
                          JHZ
                                   CTRES
                                             SET DNE HZ DUTPUT
64B4 110770
64B7 12
                          LXI
                                   D. DNEHZ
                                             FIF 99 PRESENT
                          STAX
                                   T:
                CTRES:
                                             FRESET COUNTER
64R8 AF
                          XRA
                                   Α
6489 77
                          MOV
                                   M.A
                                              ; IF LIMIT REACHED
64BA 23
                          INX
                                   н
64BB 03
                          INX
                                   В
64BC C39E64
64BF 7E
                                   CHTCY
                          JMP
                                             FINCREMENT COUNTER
                CTADV:
                          MOV
                                   A,M
-6400-30
                          INR
6401 27
                          TIRR
                                   M.A
6402 - 77 - - - -
                          MOY
                                   TXFER
                          JMP
6403 C3C664 · · ·
                TXFER:
                                   H, TIME
                                             FTRANSFER UTC TIME TO
6406 211068
                          LXI
6409 119268
6400 7D
                          LXI
                                   D, LTIME
                                            ;LOCAL TIME REGISTERS
                XER:
                          MOV
                                   Ĥ٠L
                                   TIME+7 AND OFFH
64CD FE17
                          CPI
64CF CAD964
64D2 7E
                          JZ
                                   DST
                          MOV
                                   A.M
64D3 12
                          STAX
                                   Ŀ
641)4 23
                          XMI
                                   Н
6405 13
                          THE
                                   Τı
                                   XFR
6406 030064
                          JMP
                                             TEST FOR DAYLIGHT SAVING TIME
64D9 211070
64DC 7E
                                   H.LSW
                DST:
                          LXI
                          MOV
                                   A.M
                          RAL
64BD 17
                          JHC
                                   NDST
64DE D2F764
64E1 17
                          RAL
64E2 7E
                          MOV
                                   A,M
                                   DST1
                          . INC.
64E3 D2EC64
64E6 E63F
                          INA
                                   63
64E8 30
                nst2:
                          INR
                                   Ĥ
                                   LOCAL
64E9 C3FR64
                          JMP
                          ANI
                                   63
64EC E63F
                DST1:
                          CPI
                                   O
64EE FE00
                          JZ
                                   DST2
64F0 CRE864
64F3 3D
                          TICR
64F4 C3FR64
                          JMP
                                   LOCAL
64F7 1F
                HIIST:
                          PAR
64F8 E63F
                          HHI
                                   D, LTIME+3 ; INCREMENT OR - DECREMENT
                LDCAL:
                          LXI
64FA 119568
                                             HOUR AND DAY TIME COUNTERS
                          MOV
                                   B, A
64FI 47
                                              FACCORDING TO LOCAL TIME
64FE 7E
                          1107
                                   A,M
                                             ;SWITCH VALUE
                                   192
64FF E6C0
                          IMA
                          MOV
                                   C+A
6501 4F
6502 78
                LDCNT:
                          MIT
                                   A,B
6503 FE00
                          CPI
                          JZ
                                   IRIG
6505 CAC265
6508 79-
                          MOV
                                   A.C
6509 17
                          RAL
650A 17
                          RAL
650B 18
                          LIMX
                                   D
                                              DECREMENT HOUR AND DAY COUNTERS
                                   CHTDN
6500 D25065
                          JING
                                              STEST FOR HOUR LIMIT
                          CPI
                                   35
650F FE23
                                   CTUP
                          JNZ
6511 023365
6514 AF
                          XRA
                                   Ĥ
6515 12
                          STAX
                                   Ð
6516 13
6517 18
                          INX
                                   D
                          LDAX
                                   L
                                              TEST FOR YEAR END
6518 FE66
                          CPI
                                   102
                          JZ
                                   CTUP3
651A CA3C65
651D FE65
                          CPI
                                   101
651F CA3C65
                          JZ
                                   CTUP3
                                             FIEST FOR U/T DAY LIMIT
                CTUP1:
                                   153
6522 FE99
                          CPI
6524 024E65
6527 AF
                          JNZ
                                   CTUP2
                          XRA
                          STAX
                                   Tı
6528 12
                                   D
6529 13
                          INX
 652A 1A
                                   \mathbf{p}
                          LDAX
652B 30
                          INR
                                   Ĥ
                          STAX
                                   Ţ١
652C 12
                                   \mathbf{n}
                          DCX
652D 1B
```

652E 1B	CTRT:	DCX	D	
652F 05	CTRT1:	IICR	B	•
6530 C30265		JMF	LOCHT	
6533 30	CTUP:	INR	A	FINCREMENT HOUR COUNTER
6534 6F	CTRT2:	MOV	L,A	
6535 AF		XRA	A	
6536 7D		MOV	A,L	
6537 27		DAA	7 0	
6538 12		STAX JMP	D CTRT1	
6539 032F65 6530 13	стира:	INX	B	
653D 1A	C10F3•	LDAX	D	
653E E60F -		ANI	15	
6540 FE03		CPI	3	TEST FOR YEAR END
6542 C25765		JNZ	CTUP4	TEST TUR. TEMP. END
6545 1A		LDAX	D D	
6546 E6F0		ANI	240	
6548 12		STAX	D	
6549 1B		DCX	ď	
654A AF		XRA	A	
654B C35365		JMP	CNTRT	
654E 3C	CTUP2:	INR	· A	•
654F 6F		MOV	L.A	
6550 AF		XRA	A	
6551 7D		MOV	A,L	
6552 27.		DAA		
6553 12	CHTRT:	STAX	D	
6554 C32E65	6711544	JMP	CTRT	
6557 1B	CTUP4:	DCX LDAX	D To	
.6558 1A .6559 032265		LDHX JMP	D CTUP1	•
6550 CD8F66	CNTDN:	CALL	BCDB	
655F 4F	Carribin.	MOV	C+A	
6560 AF	DMRT1:	XRA	Ř	•
6561 B9	2.11.4	CMP	Ö .	
6562 C28065		JNZ	DOUN	
6565 13		INX	D	
6566 1A		LDAX	I)	
6567 FE00		CPI	0	TEST FOR DAY LOW LIMIT
6569 C29D65		JMZ	DOWN1	
6560-13		INX	I)	
656D 1A		LDAX	D_	
656E E60F		ANI	15	
6570 FE00		CPI	0	ITEST FOR DAY LOW LIMIT
6572 C2B565		JNZ	ນດຫະເຣ	
6575 1A 6576 30		LDAX INR	I) A	
6577 3C		INR	A	
6578 3C		INR	Ä	
6579 12		STAX	D	SET DAY TO HIGH LIMIT,365
657A 1B		DCX	Ď	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
657B 3E65		MVI	A+101	
657D C3BB65		JMP	DNRT2	
6580 OD	DOUN:	DCR ·	C	DECREMENT HOUR COUNTER
6581 05		DOR	B	
6582 AF		XRA	Ĥ	
6583 B8		CMP	B	
6584 C26065		JNZ	DNRT1	
6587 79		MOV	A,C	
6588 CDBF66 658B CDCB66		CALL	BECD	
658E CDCB66		CALL	BBCD1	
6591 CDCB66		CALL ·	BBCD1	
6594 CDCB66		CALL	BRCD1	
6597 79		MDY	A,C	
6598 B4	_	DRA	H	
6599 12	-	STAX	D D	
659A C3C265		JMP	IRIG	
659D CD8F66	DOWN1:	CALL	BCDB	•
65A0 3D		DCR -	A	
65A1 CDBF66		CALL	BBCD	
6584 CDCB66		CALL	BECD1	
65A7 CDCB66		CALL	BBCD1	
65AA CDCB66		CALL	BBCD1	

y day

```
65AD CDCB66
                          CALL
                                   BBCD1
 65B0 79
                         MDV
                                   A.C
 65B1 B4
                          DRA
                                   Н
 65B2 C3BB65
65B5 1A
                          JMP
                                   DNRT2
                DDMN5:
                         LDAX
                                   D
 65B6 3D
                         DCR -
                                   A
 65B7 12
                          STAX
                                   D
 65B8 1B
                         DCX
                                   I)
 6589 3E99
                                   A, 153
                         MVI
 65BB 12
                DNRT2:
                         STAX
                                   D
 65BC 1B
                         DCX
                                   D
 65BD 0E18
                         MVI
                                   C,24
                                             SET HOUR TO HIGH LIMIT
 65BF C38065
                         JMP
                                  DOWN
 6502 010070
                IRIG:
                         LXI
                                  B, INPUT
 6505 02
                         STAX
                                  В
                                             FRESET DELAY LATCHES
 6506 219268
                                  H, LTIME
                         LXI
 6509 7E
                         MOV
                                  A.M
 65CA E60F
                         HHI
                                  15
 6500 4F
                         MDV
                                  C.A
 650D 7E
                         MUN
                                  A.M
 650E E6F0
                         ĤΝΙ
                                  240
 65D0 1F
                         RAR
 65D1 1F
                         RAR
65D2 1F
                         RAR
65D3 1F
                         RAR
65B4 47
                         MOV
                                  B.A
65D5 11886C
                                  D+CALC2
                         LXI
65D8 1A
                         LDAX
                                  \mathbf{D}
65D9 E607
                         IMA
65DB 3C
                         INR -
                                  A
65DC 57
                         MDV
                                  D.A
65DD AF
                DELAY:
                         XRA
                                  A
65DE BA
                         CMP
                                  D
65DF C24266
                         JHZ
                                  DEC
65E2 B9
                         CMP
                                  C
65E3 CA1E66
                         JZ
                                  HTHCT
65E6 79
                         MOV
                                  A,C
65E7 FE09
                         CPI
65E9 CAFD65
                                  PDSID
                         JΖ
65EC AF
                READI:
                         XRA
                                  A
65ED 119168
                         LXI
                                  D. IRIGD
65F0 1A
                         LDAX
                                  D
65F1 1F
                         RHP
65F2 12
                         XBT2
                                  n
                                  DISPL
65F3 IJ25A66
                         JHC
65F6 010270
                                  B. INPUT+2
                         LXI
65F9 02
                                            FOUTPUT IRIG 1 IF DATA 1 PRESENT
                         STAX
                                  В
65FA C35A66
                                  DISPL
                         JMP
                                  D, INPUT+1
65FD 110170
                PDSID:
                         LXI
6600 12
                                            FOUTPUT POSITION IDENTIFIER
                         KATS
                                  D
6681 78
                         MOV
                                  A.B
                                            TEST FOR MINUTE LOAD
6602 FE00
                         CPI
                                  0
6604 CA3466
                         JZ
                                  MIN
6607 FE01
                                            TEST FOR HOUR LOAD
                         CPI
6609 CA3366
                         JΖ
                                  HOUR
                                            TEST FOR DAY LOAD
6600 FE02
                         CPI
                                  2
660E CA3266
                         JZ
                                  DAY
                                            TEST FOR 100 DAY LOAD
6611 FE03
                         CPI
                                  3
6613 CR2966
                         JZ
                                  DAYH
6616 AF
                         XRA
                                  Ĥ
6617 119168
                                  D. IRIGD
                IDATA:
                         LXI
                                            FLOAD IRIG REGISTER
661A 12
                         STAX
                                  Τı
661B C35A66
                         JMP
                                  DISPL
661E B8
                         CMP
                HTHCT:
                                  н
661F C2EC65
                         SMC
                                  READI
6622 010170
                                  B. INPUT+1
                         LXI
6625 02
                         STAX
                                  F
6626 C33566
                         JMP
                                  SEC
6629 219768
                DAYH:
                         LXI
                                  H,LTIME+5
6620 7E
                        MDV
                                  A.M
662D E60F
                         ĤΝΙ
                                  15
662F C31766
                         JMP
                                  IDATA
6632 23
                DAY:
                         INX
                                  н
6633 23
                HOUR:
                         INX
                                  H
```

Į.

```
6634 23
                 MIN:
                          INX
 6635 23
                 SEC:
                          INX
                                   Ħ
 6636 7E
                          MOV
                                   A.M
 6637 17
                          RAL
 6638 E6E0
                          ANI
                                   224
 663A 4F
                          MDV
                                   C+A
 663B 7E
                          MDV
                                   A,M
663C E60F
663E B1
663F C31766
                          CHIE
                                   15
                          DRA
                          JMP
                                   IDATA
 6642 B9
                 DEC:
                          CMP
                                   C
6643 C25266
                                   DEC10
                          JMZ
6646 0E09
                         mvi
                                   0,9
                         CMP
                                   R
6648 B8
6649 C25666
                         JNZ
                                   DEC1
664C 0609
                         IVM
                                   F, 9
664E 15
                DELY:
                         DCR
                                   D
664F C3DD65
                         JIMP
                                  DELAY
6652 OD
                DEC10:
                         DCR
6653 C34E66
                         JMP
                                  DELY
6656 05
                DEC1:
                         DCR
                                  В
                                  DELY
6657 C34E66
                         JMP
                DISPL:
                         LXI
                                  B, CNTR+8
665A 015468
                         LDAX
665D 0A
                                  В
                         CPI
665E FE07
6660 DA6466
                         JC
                                  MPCHT
6663 AF
                         XRA
                                  A
6664 3C
                MPCNT:
                         INR
                         STAX
                                  R
6665 02
6666 4F
                         MOV
                                  C,A
6667 3E91
                         IVN
                                  A,LTIME-1 AND OFFH
6669 47
                         MOV
                                  B, A
666A AF
                         XRA
                                  Ĥ
                ADVCT:
                         INR
                                  H
666B 3C
6660 04
                         INR
                                  B
                         CMP
666D B9
                                  C
666E C26B66
                         JNZ
                                  ADVCT
6671 219268
                         LXI
                                  H.LTIME
6674 68
                         MOV
                                  L,B
6675 7E
                         MOV
                                  H.M
6676 210570
                         LXI
                                  H-DISP
6679 77
                         MOV
                                  M.A
667A 115B68
                         LXI
                                  D.FLAG+5
667D 18
                         LDAX
                                  D
667E FE00
                         CPI
                                  Û
                                  STEST
                         JZ
6680 CA8566
6693 3E80
                         MAI
                                  A, 128
6685 B1
                STEST:
                         DRA
                                  C
6686 23
                         INX
                                  H
                                  M. A
6687 77
                         MDV
6688 F640
                         DRI
                                  64
668A 77
                         MDV
                                  M. A
                                  191
                         ANI
668B E6BF
668D 77
                         MOV
                                  M.A
668E C9
                DPEND:
                         RET
                BCDB:
                         ANI
                                  15
668F E60F
6691 6F
                         MOV
                                  L.A
6692 1A
                         LDAX
                                  D
                                  240
6693 E6F0
                         ANI
6695 17
                         RAL
                         JHC
                                  RDT2
6696 D29F66
6699 67
                         MDV
                                  H.A
669A 7D
                         MOV
                                  fi.L
669B C650
                         ADI
                                  80
669D 6F
                         MDY
                                  L,A
                                  A,H
669E 7C
                         MOV
               RBT2:
                         RAL
669F 17
                                  RDT3
6640 DSA966
                         LINC
6683 67
                         MDV
                                  H+A
                         MOV
                                  A,L
6684 7D
66A5 C628
                         ADI
                                  40
66A7 6F
                                  L,A
                         MOV
66A3 7C
                         MOV
                                  A.H
```

```
ROT3:
                          RAL
6689 17
                                   RDT4
                          JNC
66AA D2B366
                                   H, A
                          MOV
66AD 67
                                   A.L
                          MDV
66AE 7D
                          ADI
                                    20
66AF C614
                          MOV
                                   L,A
66B1 6F
                                    A,H
                          MOV
66B2 70
                ROT4:
                          RAL
66B3 17
                                    BIN1
66B4 D2BB66
                          JHC
                          MOV
                                    A,L
66B7 7D
                                    10
66B8 C60A
                          ADI
                 BIN:
                          RET
66BA C9
                          MOV
                                    A,L
                 BIN1:
66BB 7D
66BC C3BA66
66BF 07
                          JMP
                                    BIN
                 BBCD:
                          RLC
                          RLC
6600 07
                          RLC
6601 07
                                    H.A
                          MDV:
6602 67
                                    248
                          ANI
6603 E6F8
                                    L.A
                          MDV
6605 6F
                                    A, H
66C6 7C
66C7 E607
                          MOV
                          ANI
                                    H_{\tau}0
                          IVN
6609 2600
66CB FE05
66CD DAD266
                          CPI
                 BBCD1:
                                    SHIFT
                           JC
                          ADI
                                    3
66D0 C603
                                    C.A
                 SHIFT:
                          MOV
66D2 4F
                          MDV
                                    A,L
66D3 7D
                           RAL
6604 17
                                    L,A
                           MOV
 66D5 6F
                           MDV
                                    A,C
 66D6 79
 6607 17
                           RAL
                                     C+A
                           MDV
 66D9 4F
                                     A.H
                           MDV
 66D9 7C
                           RAL
 66DA 17
                           DRA
                                     С
 66DB B1
                                    240
                           ÄΝΙ
 66DC E6F0
 66DE 67
66DF 79
                                     H.A
                           MOV
                                     A.C
                           MOV
                           ANI
                                     15
 66E0 E60F
                           RET
 66ES C9
                           NOP
 66E3 00
                           NOP
 66E4 00
                           HOP
 66E5 00
                           NOP
 66E6 00
                           NOP
 66E7 00
                           NOP
 66E8 00
                           HDP
 66E9 00
                           NDP
 66EA 00
                           NOP
 66EB 00
                           NDP
 66EC 00
                           MOP
 66ED
       0.0
                           NOP
 66EE 00
                           NOP
  66EF 00
                                      5
                            DE
  66F0 05
                                     234
                            DB
  66F1
       112
                            IJΒ
  66F2 03
                            DB
  66F3 04
                                      18
                            IιΒ
  66F4 12
                                      19
                            ÞВ
  66F5 13
                                      50
                            DR
  66F6 14
                                      21
                            DB
  66F7 15
                            IJΒ
                                      22
  66F8 16
                                      23
                            DB
  66F9 17
                                      10011000B
                   TLIST:
                            ЮF
  66FA 98
                                      01011000B
                            IIP
  66FB 58
                                      01011000B
                            I^{\dagger}B
  66FC 58
                                      00100010B
                            DB
  66FD 22
                                      10011000B
  66FE 98
                            DH
                                      Û
                            DB
  66FF 00
                                       O
                            IIP
  6700 00
                            END
  0000
```

ADVCT	666B	AGAIN	605A	agn3	635B	BRCD	66BF
BBCD1	66CB _	BCDB	668F	BIN	66BA	BIN1	66BB
BITL	61F5	BITLD	6264	BITED	626A	CALC	7004
CALC1	6C7E	CHLC5	6C88	CALCL	6C7D	CALCO	680A
CALCS	60E7 .	CALCT	6296	CALFL	60EB	CALIN	6319
CDATA	63A1	CNTCY	649E	CHTDH	655C	CHTR	684C
CHIRT	6553	CDMYT	63AE	COUNT	6498	CPDS	61C1
CPDS1	61A3	CTADV	64BF	CTRES	6488	CTRT	652E
CTRT1	652F	CTRT2	6534	CTUP	6533	CTUP1	6522
CTUP2	654E	CTUP3	653C	CTUP4	6557	DATA	6865
DAY	6632	DAYH	6629	DDATA	630B	DEC	6642
DEC1	6656	DEC10	6652	DELAY	65DD	DELY	664E
DIFFT	6538	DISP	7005	DISPL	665A	DITTD	6015
DINRT1	6560	DNRT2	65BB	DUN	6580	DOMI	659D
DOWN2	6585	DPEND	668E	DST	64D9	DST1	64EC
DST2	64E8	DXFER	6209	ERR	6169	FLA6	6856
FRAME	6047	FRM	60F8	FRMCT	60F3	GD.	606F
HILD	6100	HOUR	6633	HTHCT	661E	IDATA	6617
INC	61BB	INCR	6306	INITO	62F9	IHITK	6340
INPUT	7000	IRI6	6502	IRIGD	6891	KEYST	6351
KSEQ	63D8	KSET	6373	LASTK	6394	LNXT	61E3
LD	615B	LDAD4	61 DR	LDCAL	64FA	LOCHT	6502
LSW	7010	LTIME	6892	MIN	6634	MORE	6040
MPCNT	6664	MIGT	64F7	NFR	6199	MLIST	66F0
NOGO	62F8	ND601	6303	NSET	6386	NXT8	65D6
NXTB	62DF	NXTDG	62BE	NXTWD	627C	DNEHZ	7007
POSCT	6109	DOSID	65FD	READ	6176	READI	625B
READ2	6290	READC	6244	READI	65EC	RECAL	6087
RNXT8	62F4	ROT2	669F	RDT3	66A9	RDT4	66B3
RPBS	6824	RPDS1	685E	RPT	609D	RPT1	6151
SAT	6001	SATUR	61B2	SEC	6635	SET1	6380
SETC	6379	SHIFT	66D2	SIGN	63CA	SPOS	6817
START	6000	STEST	6685	SW	7008	SWCH	6116
SUT	60D0	SYNC	605D	TEST	6126	TIME	6810
TLIST	66FA	TDY	603F	TXFER	6406	WAIT	6205
JORD	6240	URITE	6140	XFR	64CC	XMTR	e3bb
ZERDT	60108						

What is claimed is:

1. A receiver from satellite transmitted radio fre- 40 quency carrier modulated signals in the form of pulse coded information of time values and satellite position having a known pulse rate, comprising:

a variable frequency radio frequency stage;

means for scanning said radio frequency stage over a 45 range including the frequency of said radio frequency carrier;

means for detecting said radio frequency carrier; means responsive to the detection of said radio frequency carrier to terminate frequency scanning 50

and for tracking said carrier thereafter;

a clock having a nominal frequency related to the pulse rate of said time value signals from said satel-

means responsive to the termination of scanning of 55 said radio frequency stage for synchronizing said clock with the pulse rate of said time value signals from said satellite;

a delay path calculator;

means responsive to a detection of synchronization of 60 said clock with the pulses of said time signals for enabling said delay path calculator for calculating the transmission path delay time to said satellite;

said delay path calculator including;

means for introducing actual receiver location information into said delay path calculator, means for

calculating the path delay from satellite position received from said satellite and receiver position

means responsive to the delay path calculation for shifting said clock time value corrected by said delay path calculation; and

means for displaying path delay corrected decoded local time code signals.

2. The combination in accordance with claim 1 including means responsive to the initiation of or said tuning means for displaying elapsed time on said time display means.

3. The combination in accordance with claim 1 including display means for indicating when said receiver is in a tuning mode as represented by operation of said tuning means.

4. The combination in accordance with claim 1 including display means for indicating when said receiver is in a synchronization mode as represented by operation of said synchronizing means.

5. The combination in accordance with claim 1 including display means for indicating when said receiver is in a calculating mode as represented by operation of said calculating means.

6. The combination in accordance with claim 1 including means responsive to loss of synchronization with said satellite for driving said time display by said clock whereby said display is operative in the absence of time code signals after a decoded time code signal has once been detected and decoded.

- 7. The combination in accordance with claim 1 including means responsive to the loss of said radio frequency carrier trasmitted signal for re-enabling said scanning means.
- 8. The combination in accordance with claim 7 including switch means for selectively establishing different frequency bands associated with different time signal source and means responsive to said switch means for automatically scanning the selected band.
- 9. The combination in accordance with claim 1 for use when said radio frequency carrier modulated signals originate at a ground base and are relayed by a relatively geostationary satellite to the receiver;
 - wherein said delay time calculator computes and totals the time of travel of time code signals from said ground base to said satellite and from said satellite to the location of said receiver and uses said total time as the path for which correction is made.
- 10. The combination in accordance with claim 9 wherein the ground based originated signals include satellite position information wherein said delay time calculator continuously compares the satellite position information responsive to at least two sequential satellite position signals different from the satellite position, recomputes the time delay correction and introduces that correction in the time display calculation.
- 11. The combination in accordance with claim 1 including means for receiving pulse train from a local source having a rate substantially equal to the data pulse rate of the remotely transmitted time signals and means for detecting deviation between said local pulse source and said data pulse rate, and means for displaying any deviation detected.
- 12. A receiver in accordance with claim 8 wherein said frequency scanning means includes a phase lock loop circuit employing a voltage controlled oscillator for tuning said receiver and means connecting said voltage controlled oscillator for control by said band select switch and said synchronizing means in addition to said phase locked loop whereby the operating frequency of said receiver automatically tuned and synchronized with the remote signal source.
- 13. The combination in accordance with claim 12 including means for detecting phase deviation of said local clock and means for slewing said local clock into synchronization with said incoming time pulses.
- 14. A satellite controlled clock operative to receive time code a standard pulse rate and satellite position modulated radio frequency carrier waves from either of two geostationary satellites operating at predetermined different carrier wave frequencies comprising:
 - a variable radio frequency receiving stage including means for detecting radio frequency carrier waves; switch means for allowing the selection of the nominal carrier frequency of the selected one of the two satellites;
 - frequency scanning means for incrementally sweeping said radio frequency receiving stage through a frequency band including the selected satellite carrier frequency responsive to the application of power to the receiver and selection of satellite by said switch means;
 - phase lock loop means for tracking said selected satellite carrier wave responsive to the detection thereof;

- means responsive to the detection of satellite carrier by said detecting means of said variable radio frequency receiving stage and tracking of said selected satellite carrier by said phase lock loop means for disabling said frequency scanning means;
- a local clock operating at a nominal frequency related to the pulse rate of transmissions from said satellite; means responsive to disablement of said frequency, scanning means for synchronizing said local clock with pulses received from said satellite;
- means for decoding the time code transmitted by said satellite:
- coding switch means for introducing the receiver's position into said receiver in coded form;
- calculator means for calculating the path time delay of signals from said satellite from the known satellite position information and the receiver's position as introduced by said coding switch means;
- means for combining the decoded time signals from said satellie and the path time delay calculator means; and
- means for correcting the decoded time signals from said satellite by the correction factor calculated by said path time delay calculator means for displaying the corrected local time.
- 15. The combination in accordance with claim 14 including first visual indicator means responsive to the initiation of frequency scanning for providing a visual indication thereof.
- 16. The combination in accordance with claim 14 including means responsive to the synchronizing of said local clock with satellite signals for disabling said first visual indicator means.
- 17. The combination in accordance with claim 14 including a second visual indicator means and
 - means responsive to synchronization of said local clock with satellite signals for enabling said second visual indicator means.
- 18. The combination in accordance with claim 14 including third visual indicator means and
 - means responsive to the operation of said calculator means for enabling said third visual indicator means.
- 19. The combination in accordance with claim 14 including means for enabling said calculator means, only after said local clock is synchronized with pulses received from said satellite.
- 20. The combination in accordance with claim 14 including means responsive to the loss of synchronism of said clock with said satellite signals for re-enabling said frequency scanning means.
- 21. The combination in accordance with claim 14 wherein said display means is driven by said local clock whereby the display means is incremented responsive to said clock after the loss of satellite signals.
 - 22. The combination in accordance with claim 14 including time zone selector switch and
 - means responsive to the position of said time zone selector switch for incrementing or decrementing the hour indication of said display means.
 - 23. The combination in accordance with claim 14 including daylight saving time switch means and
 - means responsive to the position of said last switch for incrementing or decrementing the hour indication of said display means by one hour.
 - 24. The combination in accordance with claim 14 including means for receiving a local standard pulse rate

nominally equal to the standard pulse rate transmitted by said satellite,

means for detecting the standard pulse from said satellite,

means for comparing the local and satellite standard pulse rates; and means for displaying the deviation if any from said satellite standard pulse rate.